These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 33873173)

  • 1. Decomposition mechanism on different surfaces of copper azide.
    Han X; Du H; Guo W
    J Phys Condens Matter; 2021 May; 33(25):. PubMed ID: 33873173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Density functional theory calculations of the hydrazine decomposition mechanism on the planar and stepped Cu(111) surfaces.
    Tafreshi SS; Roldan A; de Leeuw NH
    Phys Chem Chem Phys; 2015 Sep; 17(33):21533-46. PubMed ID: 26219750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Structures, Dipole Moments, and Electronic Properties of β-HMX under External Electric Field from First-Principles Calculations.
    Liu YS; Zeng W; Liu FS; Liu ZT; Yuan WS; Liu QJ
    J Phys Chem A; 2024 May; 128(21):4189-4198. PubMed ID: 38748760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical study of the reduction in sensitivity of copper azide following encapsulation in carbon nanotubes.
    Zhang GY; Han JM; Yang L; Zhang TL
    J Mol Model; 2020 Apr; 26(4):90. PubMed ID: 32240386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energetic Films Realized by Encapsulating Copper Azide in Silicon-based Carbon Nanotube Arrays with Higher Electrostatic Safety.
    Liu X; Hu Y; Wei H; Chen B; Ye Y; Shen R
    Micromachines (Basel); 2020 Jun; 11(6):. PubMed ID: 32517195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Initial mechanisms for the unimolecular decomposition of electronically excited nitrogen-rich energetic materials with tetrazole rings: 1-DTE, 5-DTE, BTA, and BTH.
    Yuan B; Bernstein ER
    J Chem Phys; 2016 Jun; 144(23):234302. PubMed ID: 27334157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decomposition and Energy-Enhancement Mechanism of the Energetic Binder Glycidyl Azide Polymer at Explosive Detonation Temperatures.
    Liu D; Geng D; Yang K; Lu J; Chan SHY; Chen C; Hng HH; Chen L
    J Phys Chem A; 2020 Jul; 124(27):5542-5554. PubMed ID: 32436383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Can Cyclen Bind Alkali Metal Azides? A DFT Study as a Precursor to Synthesis.
    Bhakhoa H; Rhyman L; Lee EP; Ramasami P; Dyke JM
    Chemistry; 2016 Mar; 22(13):4469-82. PubMed ID: 26880648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Initial mechanisms for the decomposition of electronically excited energetic materials: 1,5'-BT, 5,5'-BT, and AzTT.
    Yuan B; Yu Z; Bernstein ER
    J Chem Phys; 2015 Mar; 142(12):124315. PubMed ID: 25833587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Initial mechanisms for the unimolecular decomposition of electronically excited bisfuroxan based energetic materials.
    Yuan B; Bernstein ER
    J Chem Phys; 2017 Jan; 146(1):014301. PubMed ID: 28063429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental observation of TiN
    Ding KW; Li XW; Xu HG; Li TQ; Ge ZX; Wang Q; Zheng WJ
    Chem Sci; 2015 Aug; 6(8):4723-4729. PubMed ID: 28717484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal Stability of Bis-Tetrazole and Bis-Triazole Derivatives with Long Catenated Nitrogen Chains: Quantitative Insights from High-Level Quantum Chemical Calculations.
    Gorn MV; Gritsan NP; Goldsmith CF; Kiselev VG
    J Phys Chem A; 2020 Sep; 124(38):7665-7677. PubMed ID: 32786967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structures, Stability, and Decomposition Dynamics of the Polynitrogen Molecule N
    Zakai I; Grinstein D; Welner S; Gerber RB
    J Phys Chem A; 2019 Aug; 123(34):7384-7393. PubMed ID: 31381345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences in nuclearity, molecular shapes, and coordination modes of azide in the complexes of Cd(II) and Hg(II) with a "metalloligand" [CuL] (H2L = N,N'-bis(salicylidene)-1,3-propanediamine): characterization in solid and in solutions, and theoretical calculations.
    Das LK; Kadam RM; Bauzá A; Frontera A; Ghosh A
    Inorg Chem; 2012 Nov; 51(22):12407-18. PubMed ID: 23131113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Side-chain structures in the first turn of the alpha-helix.
    Penel S; Hughes E; Doig AJ
    J Mol Biol; 1999 Mar; 287(1):127-43. PubMed ID: 10074412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal reaction and luminescence of long-lived N
    Lo JI; Chou SL; Peng YC; Lu HC; Cheng BM
    Proc Natl Acad Sci U S A; 2019 Dec; 116(49):24420-24424. PubMed ID: 31732669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface-Plasmon-Induced Ammonia Decomposition on Copper: Excited-State Reaction Pathways Revealed by Embedded Correlated Wavefunction Theory.
    Bao JL; Carter EA
    ACS Nano; 2019 Sep; 13(9):9944-9957. PubMed ID: 31393708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoinduced Curtius rearrangements of fluorocarbonyl azide, FC(O)N
    Xie BB; Cui CX; Fang WH; Cui G
    Phys Chem Chem Phys; 2018 Jul; 20(29):19363-19372. PubMed ID: 29998234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A theoretical study of nitric oxide adsorption and dissociation on copper-exchanged zeolites SSZ-13 and SAPO-34: the impact of framework acid-base properties.
    Uzunova EL; Mikosch H
    Phys Chem Chem Phys; 2016 Apr; 18(16):11233-42. PubMed ID: 27053488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. β-CuN3: the overlooked ground-state polymorph of copper azide with heterographene-like layers.
    Liu X; George J; Maintz S; Dronskowski R
    Angew Chem Int Ed Engl; 2015 Feb; 54(6):1954-9. PubMed ID: 25522245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.