BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 33873323)

  • 1. Zincophilic root foraging in Thlaspi caerulescens.
    Haines BJ
    New Phytol; 2002 Sep; 155(3):363-372. PubMed ID: 33873323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Root exudates of the hyperaccumulator Thlaspi caerulescens do not enhance metal mobilization.
    Zhao FJ; Hamon RE; McLaughlin MJ
    New Phytol; 2001 Sep; 151(3):613-620. PubMed ID: 33853247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating heavy-metal hyperaccumulation using Thlaspi caerulescens as a model system.
    Milner MJ; Kochian LV
    Ann Bot; 2008 Jul; 102(1):3-13. PubMed ID: 18440996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hyperaccumulation of metals by Thlaspi caerulescens as affected by root development and Cd-Zn/Ca-Mg interactions.
    Saison C; Schwartz C; Morel JL
    Int J Phytoremediation; 2004; 6(1):49-61. PubMed ID: 15224775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of heavy metal hyperaccumulation at the cellular level: development and characterization of Thlaspi caerulescens suspension cell lines.
    Klein MA; Sekimoto H; Milner MJ; Kochian LV
    Plant Physiol; 2008 Aug; 147(4):2006-16. PubMed ID: 18550685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression and functional analysis of metal transporter genes in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens.
    Plaza S; Tearall KL; Zhao FJ; Buchner P; McGrath SP; Hawkesford MJ
    J Exp Bot; 2007; 58(7):1717-28. PubMed ID: 17404382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological evidence for a high-affinity cadmium transporter highly expressed in a Thlaspi caerulescens ecotype.
    Lombi E; Zhao FJ; McGrath SP; Young SD; Sacchi GA
    New Phytol; 2001 Jan; 149(1):53-60. PubMed ID: 33853240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hyperaccumulation of Zn by Thlaspi caerulescens can ameliorate Zn toxicity in the rhizosphere of cocropped Thlaspi arvense.
    Whiting SN; Leake JR; McGrath SP; Baker AJ
    Environ Sci Technol; 2001 Aug; 35(15):3237-41. PubMed ID: 11506012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal availability and soil toxicity after repeated croppings of Thlaspi caerulescens in metal contaminated soils.
    Keller C; Hammer D
    Environ Pollut; 2004 Sep; 131(2):243-54. PubMed ID: 15234091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Soil geochemical factors regulate Cd accumulation by metal hyperaccumulating Noccaea caerulescens (J. Presl & C. Presl) F.K. Mey in field-contaminated soils.
    Rosenfeld CE; Chaney RL; Martínez CE
    Sci Total Environ; 2018 Mar; 616-617():279-287. PubMed ID: 29121576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cadmium-zinc accumulation and photosystem II responses of Noccaea caerulescens to Cd and Zn exposure.
    Bayçu G; Gevrek-Kürüm N; Moustaka J; Csatári I; Rognes SE; Moustakas M
    Environ Sci Pollut Res Int; 2017 Jan; 24(3):2840-2850. PubMed ID: 27838905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reciprocal grafting separates the roles of the root and shoot in zinc hyperaccumulation in Thlaspi caerulescens.
    Guimarães MA; Gustin JL; Salt DE
    New Phytol; 2009 Oct; 184(2):323-329. PubMed ID: 19656301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of zinc hyperaccumulation on glucosinolates in Thlaspi caerulescens.
    Tolrà RP; Poschenrieder C; Alonso R; Barceló D; Barceló J
    New Phytol; 2001 Sep; 151(3):621-626. PubMed ID: 33853264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-segregation analysis of cadmium and zinc accumulation in Thlaspi caerulescens interecotypic crosses.
    Zha HG; Jiang RF; Zhao FJ; Vooijs R; Schat H; Barker JHA; McGrath SP
    New Phytol; 2004 Aug; 163(2):299-312. PubMed ID: 33873627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential metal-specific tolerance and accumulation patterns among Thlaspi caerulescens populations originating from different soil types.
    Assunção AGL; Bookum WM; Nelissen HJM; Vooijs R; Schat H; Ernst WHO
    New Phytol; 2003 Aug; 159(2):411-419. PubMed ID: 33873347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytoremediation of urban soils contaminated with trace metals using Noccaea caerulescens: comparing non-metallicolous populations to the metallicolous 'Ganges' in field trials.
    Jacobs A; Drouet T; Sterckeman T; Noret N
    Environ Sci Pollut Res Int; 2017 Mar; 24(9):8176-8188. PubMed ID: 28144868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristics of cadmium uptake in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens.
    Zhao FJ; Hamon RE; Lombi E; McLaughlin MJ; McGrath SP
    J Exp Bot; 2002 Mar; 53(368):535-43. PubMed ID: 11847252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens.
    Whiting SN; de Souza MP; Terry N
    Environ Sci Technol; 2001 Aug; 35(15):3144-50. PubMed ID: 11505990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plant Cd2+ and Zn2+ status effects on root and shoot heavy metal accumulation in Thlaspi caerulescens.
    Papoyan A; Piñeros M; Kochian LV
    New Phytol; 2007; 175(1):51-58. PubMed ID: 17547666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Altered Zn compartmentation in the root symplasm and stimulated Zn absorption into the leaf as mechanisms involved in Zn hyperaccumulation in thlaspi caerulescens.
    Lasat MM; Baker AJ; Kochian LV
    Plant Physiol; 1998 Nov; 118(3):875-83. PubMed ID: 9808732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.