These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 33873346)

  • 1. Chlamydomonas reinhardtii as a eukaryotic photosynthetic model for studies of heavy metal homeostasis and tolerance.
    Hanikenne M
    New Phytol; 2003 Aug; 159(2):331-340. PubMed ID: 33873346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Copper-dependent iron assimilation pathway in the model photosynthetic eukaryote Chlamydomonas reinhardtii.
    La Fontaine S; Quinn JM; Nakamoto SS; Page MD; Göhre V; Moseley JL; Kropat J; Merchant S
    Eukaryot Cell; 2002 Oct; 1(5):736-57. PubMed ID: 12455693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Whole-genome re-sequencing and transcriptome reveal cadmium tolerance related genes and pathways in Chlamydomonas reinhardtii.
    Yu Z; Zhang T; Zhu Y
    Ecotoxicol Environ Saf; 2020 Mar; 191():110231. PubMed ID: 31981954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Between a rock and a hard place: trace element nutrition in Chlamydomonas.
    Merchant SS; Allen MD; Kropat J; Moseley JL; Long JC; Tottey S; Terauchi AM
    Biochim Biophys Acta; 2006 Jul; 1763(7):578-94. PubMed ID: 16766055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Basis of genetic adaptation to heavy metal stress in the acidophilic green alga Chlamydomonas acidophila.
    Puente-Sánchez F; Díaz S; Penacho V; Aguilera A; Olsson S
    Aquat Toxicol; 2018 Jul; 200():62-72. PubMed ID: 29727772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of Chlamydomonas reinhardtii genome structure using large-scale sequencing of regions on linkage groups I and III.
    Li JB; Lin S; Jia H; Wu H; Roe BA; Kulp D; Stormo GD; Dutcher SK
    J Eukaryot Microbiol; 2003; 50(3):145-55. PubMed ID: 12836870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chlamydomonas reinhardtii as the photosynthetic yeast.
    Rochaix JD
    Annu Rev Genet; 1995; 29():209-30. PubMed ID: 8825474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological characterization of Chlamydomonas reinhardtii acclimated to chronic stress induced by Ag, Cd, Cr, Cu and Hg ions.
    Nowicka B; Pluciński B; Kuczyńska P; Kruk J
    Ecotoxicol Environ Saf; 2016 Aug; 130():133-45. PubMed ID: 27104807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robust Microplate-Based Methods for Culturing and
    Haire TC; Bell C; Cutshaw K; Swiger B; Winkelmann K; Palmer AG
    Front Plant Sci; 2018; 9():235. PubMed ID: 29623083
    [No Abstract]   [Full Text] [Related]  

  • 10. HISN3 mediates adaptive response of Chlamydomonas reinhardtii to excess nickel.
    Zheng Q; Cheng ZZ; Yang ZM
    Plant Cell Physiol; 2013 Dec; 54(12):1951-62. PubMed ID: 24078767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cadmium- and iron-stress-inducible gene expression in the green alga Chlamydomonas reinhardtii: evidence for H43 protein function in iron assimilation.
    Rubinelli P; Siripornadulsil S; Gao-Rubinelli F; Sayre RT
    Planta; 2002 May; 215(1):1-13. PubMed ID: 12012236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular techniques to interrogate and edit the Chlamydomonas nuclear genome.
    Jinkerson RE; Jonikas MC
    Plant J; 2015 May; 82(3):393-412. PubMed ID: 25704665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activation of Autophagy by Metals in Chlamydomonas reinhardtii.
    Pérez-Martín M; Blaby-Haas CE; Pérez-Pérez ME; Andrés-Garrido A; Blaby IK; Merchant SS; Crespo JL
    Eukaryot Cell; 2015 Sep; 14(9):964-73. PubMed ID: 26163317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Cu2+, Ni2+, Pb2+, Zn2+ and pentachlorophenol on photosynthesis and motility in Chlamydomonas reinhardtii in short-term exposure experiments.
    Danilov RA; Ekelund NG
    BMC Ecol; 2001; 1():1. PubMed ID: 11387031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acclimation of Chlamydomonas reinhardtii to its nutrient environment.
    Grossman A
    Protist; 2000 Oct; 151(3):201-24. PubMed ID: 11079767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The circadian clock of the unicellular eukaryotic model organism Chlamydomonas reinhardtii.
    Mittag M; Wagner V
    Biol Chem; 2003 May; 384(5):689-95. PubMed ID: 12817465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The inhibitor-evoked shortage of tocopherol and plastoquinol is compensated by other antioxidant mechanisms in Chlamydomonas reinhardtii exposed to toxic concentrations of cadmium and chromium ions.
    Nowicka B; Fesenko T; Walczak J; Kruk J
    Ecotoxicol Environ Saf; 2020 Mar; 191():110241. PubMed ID: 32007925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and characterization of a heavy metal- and antibiotic-tolerant novel bacterial strain from a contaminated culture plate of
    Mitra M; Nguyen KM; Box TW; Berry TL; Fujita M
    F1000Res; 2021; 10():533. PubMed ID: 34540203
    [No Abstract]   [Full Text] [Related]  

  • 19. The cell wall as a barrier to uptake of metal ions in the unicellular green alga Chlamydomonas reinhardtii (Chlorophyceae).
    Macfie SM; Welbourn PM
    Arch Environ Contam Toxicol; 2000 Nov; 39(4):413-9. PubMed ID: 11031300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The unicellular green alga Chlamydomonas reinhardtii as an experimental system to study chloroplast RNA metabolism.
    Nickelsen J; Kück U
    Naturwissenschaften; 2000 Mar; 87(3):97-107. PubMed ID: 10798194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.