BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 33873347)

  • 1. Differential metal-specific tolerance and accumulation patterns among Thlaspi caerulescens populations originating from different soil types.
    Assunção AGL; Bookum WM; Nelissen HJM; Vooijs R; Schat H; Ernst WHO
    New Phytol; 2003 Aug; 159(2):411-419. PubMed ID: 33873347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cadmium-zinc accumulation and photosystem II responses of Noccaea caerulescens to Cd and Zn exposure.
    Bayçu G; Gevrek-Kürüm N; Moustaka J; Csatári I; Rognes SE; Moustakas M
    Environ Sci Pollut Res Int; 2017 Jan; 24(3):2840-2850. PubMed ID: 27838905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating heavy-metal hyperaccumulation using Thlaspi caerulescens as a model system.
    Milner MJ; Kochian LV
    Ann Bot; 2008 Jul; 102(1):3-13. PubMed ID: 18440996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of heavy metal hyperaccumulation at the cellular level: development and characterization of Thlaspi caerulescens suspension cell lines.
    Klein MA; Sekimoto H; Milner MJ; Kochian LV
    Plant Physiol; 2008 Aug; 147(4):2006-16. PubMed ID: 18550685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plant Cd2+ and Zn2+ status effects on root and shoot heavy metal accumulation in Thlaspi caerulescens.
    Papoyan A; Piñeros M; Kochian LV
    New Phytol; 2007; 175(1):51-58. PubMed ID: 17547666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cadmium hyperaccumulation and reproductive traits in natural Thlaspi caerulescens populations.
    Basic N; Keller C; Fontanillas P; Vittoz P; Besnard G; Galland N
    Plant Biol (Stuttg); 2006 Jan; 8(1):64-72. PubMed ID: 16435270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-segregation analysis of cadmium and zinc accumulation in Thlaspi caerulescens interecotypic crosses.
    Zha HG; Jiang RF; Zhao FJ; Vooijs R; Schat H; Barker JHA; McGrath SP
    New Phytol; 2004 Aug; 163(2):299-312. PubMed ID: 33873627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Within and between population variation for zinc and nickel accumulation in two species of Thlaspi (Brassicaceae).
    Taylor SI; Macnair MR
    New Phytol; 2006; 169(3):505-13. PubMed ID: 16411953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thlaspi caerulescens on nonmetalliferous soil in Luxembourg: ecological niche and genetic variation in mineral element composition.
    Molitor M; Dechamps C; Gruber W; Meerts P
    New Phytol; 2005 Feb; 165(2):503-12. PubMed ID: 15720661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The heavy metal hyperaccumulator Thlaspi caerulescens expresses many species-specific genes, as identified by comparative expressed sequence tag analysis.
    Rigola D; Fiers M; Vurro E; Aarts MG
    New Phytol; 2006; 170(4):753-65. PubMed ID: 16684236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of a genetic linkage map of Thlaspi caerulescens and quantitative trait loci analysis of zinc accumulation.
    Assunção AG; Pieper B; Vromans J; Lindhout P; Aarts MG; Schat H
    New Phytol; 2006; 170(1):21-32. PubMed ID: 16539600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A cosegregation analysis of zinc (Zn) accumulation and Zn tolerance in the Zn hyperaccumulator Thlaspi caerulescens.
    Assunção AGL; Ten Bookum WM; Nelissen HJM; Vooijs R; Schat H; Ernst WHO
    New Phytol; 2003 Aug; 159(2):383-390. PubMed ID: 33873349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reciprocal grafting separates the roles of the root and shoot in zinc hyperaccumulation in Thlaspi caerulescens.
    Guimarães MA; Gustin JL; Salt DE
    New Phytol; 2009 Oct; 184(2):323-329. PubMed ID: 19656301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variation in root-to-shoot translocation of cadmium and zinc among different accessions of the hyperaccumulators Thlaspi caerulescens and Thlaspi praecox.
    Xing JP; Jiang RF; Ueno D; Ma JF; Schat H; McGrath SP; Zhao FJ
    New Phytol; 2008; 178(2):315-325. PubMed ID: 18266619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of Thlaspi caerulescens genes that may be involved in heavy metal hyperaccumulation and tolerance. Characterization of a novel heavy metal transporting ATPase.
    Papoyan A; Kochian LV
    Plant Physiol; 2004 Nov; 136(3):3814-23. PubMed ID: 15516513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J. & C. Presl (Brassicaceae).
    Baker AJM; Reeves RD; Hajar ASM
    New Phytol; 1994 May; 127(1):61-68. PubMed ID: 33874394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heavy metal specificity of cellular tolerance in two hyperaccumulating plants, Arabidopsis halleri and Thlaspi caerulescens.
    Marquès L; Cossegal M; Bodin S; Czernic P; Lebrun M
    New Phytol; 2004 Nov; 164(2):289-295. PubMed ID: 33873551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. QTL analysis of cadmium and zinc accumulation in the heavy metal hyperaccumulator Thlaspi caerulescens.
    Deniau AX; Pieper B; Ten Bookum WM; Lindhout P; Aarts MG; Schat H
    Theor Appl Genet; 2006 Sep; 113(5):907-20. PubMed ID: 16850314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zinc and cadmium hyperaccumulation by Thlaspi caerulescens from metalliferous and nonmetalliferous sites in the Mediterranean area: implications for phytoremediation.
    Escarré J; Lefèbvre C; Gruber W; Leblanc M; Lepart J; Rivière Y; Delay B
    New Phytol; 2000 Mar; 145(3):429-437. PubMed ID: 33862907
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Root exudates of the hyperaccumulator Thlaspi caerulescens do not enhance metal mobilization.
    Zhao FJ; Hamon RE; McLaughlin MJ
    New Phytol; 2001 Sep; 151(3):613-620. PubMed ID: 33853247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.