These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 33873380)
1. Vesicular-arbuscular mycorrhizal infection of Quercus rubra seedlings. Dickie IA; Koide RT; Fayish AC New Phytol; 2001 Jul; 151(1):257-264. PubMed ID: 33873380 [TBL] [Abstract][Full Text] [Related]
2. Influence of overstory density on ecophysiology of red oak (Quercus rubra) and sugar maple (Acer saccharum) seedlings in central Ontario shelterwoods. Parker WC; Dey DC Tree Physiol; 2008 May; 28(5):797-804. PubMed ID: 18316311 [TBL] [Abstract][Full Text] [Related]
3. Photosynthetic characteristics in canopies of Quercus rubra, Quercus prinus and Acer rubrum differ in response to soil water availability. Turnbull MH; Whitehead D; Tissue DT; Schuster WS; Brown KJ; Engel VC; Griffin KL Oecologia; 2002 Feb; 130(4):515-524. PubMed ID: 28547252 [TBL] [Abstract][Full Text] [Related]
4. Experimentally reduced root-microbe interactions reveal limited plasticity in functional root traits in Acer and Quercus. Lee MH; Comas LH; Callahan HS Ann Bot; 2014 Feb; 113(3):513-21. PubMed ID: 24363335 [TBL] [Abstract][Full Text] [Related]
5. Resistance Responses of Potato to Vesicular-Arbuscular Mycorrhizal Fungi under Varying Abiotic Phosphorus Levels. McArthur DA; Knowles NR Plant Physiol; 1992 Sep; 100(1):341-51. PubMed ID: 16652967 [TBL] [Abstract][Full Text] [Related]
6. Shade, leaf growth and crown development of Quercus rubra, Quercus velutina, Prunus serotina and Acer rubrum seedlings. Gottschalk KW Tree Physiol; 1994; 14(7_9):735-749. PubMed ID: 14967644 [TBL] [Abstract][Full Text] [Related]
7. Effects of vesicular-arbuscular mycorrhizal (VAM) fungi on the seedling growth of three Pistacia species. Caglar S; Akgun A J Environ Biol; 2006 Jul; 27(3):485-9. PubMed ID: 17402238 [TBL] [Abstract][Full Text] [Related]
8. Nitrogen sink strength of ectomycorrhizal morphotypes of Quercus douglasii, Q. garryana, and Q. agrifolia seedlings grown in a northern California oak woodland. He XH; Horwath WR; Zasoski RJ; Aanderud Z; Bledsoe CS Mycorrhiza; 2007 Dec; 18(1):33-41. PubMed ID: 17899217 [TBL] [Abstract][Full Text] [Related]
9. Resprouting by seedlings of four North American deciduous broadleaved tree species following experimental burning. Keyser TL Oecologia; 2019 May; 190(1):207-218. PubMed ID: 31016382 [TBL] [Abstract][Full Text] [Related]
10. Population dynamics and growth patterns for a cohort of northern red oak (Quercus rubra) seedlings. Crow TR Oecologia; 1992 Aug; 91(2):192-200. PubMed ID: 28313456 [TBL] [Abstract][Full Text] [Related]
11. VESICULAR-ARBUSCULAR MYCORRHIZA IN FIELD-GROWN CROPS: III. MYCORRHIZAL INFECTION AND RATES OF PHOSPHORUS INFLOW IN PEA PLANTS. Jakobsen I New Phytol; 1986 Dec; 104(4):573-581. PubMed ID: 33873865 [TBL] [Abstract][Full Text] [Related]
12. Combined effects of earthworms and vesicular-arbuscular mycorrhizas on plant and aphid performance. Wurst S; Dugassa-Gobena D; Langel R; Bonkowski M; Scheu S New Phytol; 2004 Jul; 163(1):169-176. PubMed ID: 33873788 [TBL] [Abstract][Full Text] [Related]
13. Oak seedling growth and ectomycorrhizal colonization are less in eastern hemlock stands infested with hemlock woolly adelgid than in adjacent oak stands. Lewis JD; Licitra J; Tuininga AR; Sirulnik A; Turner GD; Johnson J Tree Physiol; 2008 Apr; 28(4):629-36. PubMed ID: 18244948 [TBL] [Abstract][Full Text] [Related]
14. Ectomycorrhizal responses to organic and inorganic nitrogen sources when associating with two host species. Avolio ML; Tuininga AR; Lewis JD; Marchese M Mycol Res; 2009 Aug; 113(Pt 8):897-907. PubMed ID: 19465124 [TBL] [Abstract][Full Text] [Related]
15. Shared ectomycorrhizal fungi between a herbaceous perennial (Helianthemum bicknellii) and oak (Quercus) seedlings. Dickie IA; Guza RC; Krazewski SE; Reich PB New Phytol; 2004 Nov; 164(2):375-382. PubMed ID: 33873549 [TBL] [Abstract][Full Text] [Related]
16. A comparative study of physiological and morphological seedling traits associated with shade tolerance in introduced red oak (Quercus rubra) and native hardwood tree species in southwestern Germany. Kuehne C; Nosko P; Horwath T; Bauhus J Tree Physiol; 2014 Feb; 34(2):184-93. PubMed ID: 24531297 [TBL] [Abstract][Full Text] [Related]
17. Soil transfers from valley oak (Quercus lobata Nee) stands increase ectomycorrhizal diversity and alter root and shoot growth on valley oak seedlings. Berman JT; Bledsoe CS Mycorrhiza; 1998 Feb; 7(5):223-35. PubMed ID: 24578047 [TBL] [Abstract][Full Text] [Related]
18. Hay-scented fern (Dennstaedtia punctilobula (Michx.) Moore) interference with growth of northern red oak (Quercus rubra L.) seedlings. Lyon J; Sharpe WE Tree Physiol; 1996; 16(11_12):923-932. PubMed ID: 14871785 [TBL] [Abstract][Full Text] [Related]
19. Temporal infectivity and specificity of vesicular-arbuscular mycorrhizas in co-existing grassland species. Sanders IR Oecologia; 1993 Mar; 93(3):349-355. PubMed ID: 28313434 [TBL] [Abstract][Full Text] [Related]
20. Higher growth temperatures decreased net carbon assimilation and biomass accumulation of northern red oak seedlings near the southern limit of the species range. Wertin TM; McGuire MA; Teskey RO Tree Physiol; 2011 Dec; 31(12):1277-88. PubMed ID: 21937670 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]