These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

687 related articles for article (PubMed ID: 33873400)

  • 1. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource.
    Vance CP; Uhde-Stone C; Allan DL
    New Phytol; 2003 Mar; 157(3):423-447. PubMed ID: 33873400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological and transcriptomic data highlight common features between iron and phosphorus acquisition mechanisms in white lupin roots.
    Venuti S; Zanin L; Marroni F; Franco A; Morgante M; Pinton R; Tomasi N
    Plant Sci; 2019 Aug; 285():110-121. PubMed ID: 31203875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphorus uptake is associated with the rhizosheath formation of mature cluster roots in white lupin under soil drying and phosphorus deficiency.
    Aslam MM; Karanja JK; Yuan W; Zhang Q; Zhang J; Xu W
    Plant Physiol Biochem; 2021 Sep; 166():531-539. PubMed ID: 34174658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An RNA-Seq transcriptome analysis of orthophosphate-deficient white lupin reveals novel insights into phosphorus acclimation in plants.
    O'Rourke JA; Yang SS; Miller SS; Bucciarelli B; Liu J; Rydeen A; Bozsoki Z; Uhde-Stone C; Tu ZJ; Allan D; Gronwald JW; Vance CP
    Plant Physiol; 2013 Feb; 161(2):705-24. PubMed ID: 23197803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactive effects of phosphorus deficiency and exogenous auxin on root morphological and physiological traits in white lupin (Lupinus albus L.).
    Tang H; Shen J; Zhang F; Rengel Z
    Sci China Life Sci; 2013 Apr; 56(4):313-23. PubMed ID: 23504274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Root acid phosphatases and rhizobacteria synergistically enhance white lupin and rice phosphorus acquisition.
    Aslam MM; Pueyo JJ; Pang J; Yang J; Chen W; Chen H; Waseem M; Li Y; Zhang J; Xu W
    Plant Physiol; 2022 Nov; 190(4):2449-2465. PubMed ID: 36066452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transgenic proteoid roots of white lupin: a vehicle for characterizing and silencing root genes involved in adaptation to P stress.
    Uhde-Stone C; Liu J; Zinn KE; Allan DL; Vance CP
    Plant J; 2005 Dec; 44(5):840-53. PubMed ID: 16297074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of the response to phosphorus deficiency in two lupin species, Lupinus albus and L. angustifolius, with contrasting root morphology.
    Funayama-Noguchi S; Noguchi K; Terashima I
    Plant Cell Environ; 2015 Mar; 38(3):399-410. PubMed ID: 24941862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitric oxide is involved in phosphorus deficiency-induced cluster-root development and citrate exudation in white lupin.
    Wang BL; Tang XY; Cheng LY; Zhang AZ; Zhang WH; Zhang FS; Liu JQ; Cao Y; Allan DL; Vance CP; Shen JB
    New Phytol; 2010 Sep; 187(4):1112-1123. PubMed ID: 20553395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitric oxide is the shared signalling molecule in phosphorus- and iron-deficiency-induced formation of cluster roots in white lupin (Lupinus albus).
    Meng ZB; Chen LQ; Suo D; Li GX; Tang CX; Zheng SJ
    Ann Bot; 2012 May; 109(6):1055-64. PubMed ID: 22351487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of root morphology, respiration and carboxylate exudation on carbon economy in two non-mycorrhizal lupines under phosphorus deficiency.
    Funayama-Noguchi S; Shibata M; Noguchi K; Terashima I
    Plant Cell Environ; 2021 Feb; 44(2):598-612. PubMed ID: 33099780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrogen and Phosphorus Interplay in Lupin Root Nodules and Cluster Roots.
    Pueyo JJ; Quiñones MA; Coba de la Peña T; Fedorova EE; Lucas MM
    Front Plant Sci; 2021; 12():644218. PubMed ID: 33747024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of nitrogen form on root morphological and physiological adaptations of maize, white lupin and faba bean under phosphorus deficiency.
    Liu H; Tang C; Li C
    AoB Plants; 2016; 8():. PubMed ID: 27519912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of ABC transporter G subfamily in white lupin and functional characterization of L.albABGC29 in phosphorus use.
    Aslam MM; Waseem M; Zhang Q; Ke W; Zhang J; Xu W
    BMC Genomics; 2021 Oct; 22(1):723. PubMed ID: 34615466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic Adaptations of White Lupin Roots and Shoots under Phosphorus Deficiency.
    Müller J; Gödde V; Niehaus K; Zörb C
    Front Plant Sci; 2015; 6():1014. PubMed ID: 26635840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of nitrogen nutrition on cluster root formation and proton extrusion by Lupinus albus.
    Sas L; Rengel Z; Tang C
    Ann Bot; 2002 Apr; 89(4):435-42. PubMed ID: 12096804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Root-derived auxin contributes to the phosphorus-deficiency-induced cluster-root formation in white lupin (Lupinus albus).
    Meng ZB; You XD; Suo D; Chen YL; Tang C; Yang JL; Zheng SJ
    Physiol Plant; 2013 Aug; 148(4):481-9. PubMed ID: 23067249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial distribution and expression of intracellular and extracellular acid phosphatases of cluster roots at different developmental stages in white lupin.
    Tang H; Li X; Zu C; Zhang F; Shen J
    J Plant Physiol; 2013 Sep; 170(14):1243-50. PubMed ID: 23746995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Costs of acquiring phosphorus by vascular land plants: patterns and implications for plant coexistence.
    Raven JA; Lambers H; Smith SE; Westoby M
    New Phytol; 2018 Mar; 217(4):1420-1427. PubMed ID: 29292829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorus deficiency affects the allocation of below-ground resources to combined cluster roots and nodules in Lupinus albus.
    Thuynsma R; Valentine A; Kleinert A
    J Plant Physiol; 2014 Feb; 171(3-4):285-91. PubMed ID: 24129121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.