BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 33873404)

  • 21. Arbuscular mycorrhizal inhibition of growth in barley cannot be attributed to extent of colonization, fungal phosphorus uptake or effects on expression of plant phosphate transporter genes.
    Grace EJ; Cotsaftis O; Tester M; Smith FA; Smith SE
    New Phytol; 2009 Mar; 181(4):938-949. PubMed ID: 19140934
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Plant growth depressions in arbuscular mycorrhizal symbioses: not just caused by carbon drain?
    Li H; Smith FA; Dickson S; Holloway RE; Smith SE
    New Phytol; 2008; 178(4):852-862. PubMed ID: 18346106
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of Root Colonization by Arbuscular Mycorrhizal Fungi on Growth, Productivity and Blast Resistance in Rice.
    Campo S; Martín-Cardoso H; Olivé M; Pla E; Catala-Forner M; Martínez-Eixarch M; San Segundo B
    Rice (N Y); 2020 Jun; 13(1):42. PubMed ID: 32572623
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impact of temperature on the arbuscular mycorrhizal (AM) symbiosis: growth responses of the host plant and its AM fungal partner.
    Heinemeyer A; Fitter AH
    J Exp Bot; 2004 Feb; 55(396):525-34. PubMed ID: 14739273
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material.
    Leigh J; Hodge A; Fitter AH
    New Phytol; 2009; 181(1):199-207. PubMed ID: 18811615
    [TBL] [Abstract][Full Text] [Related]  

  • 26.
    Lerat S; Gauci R; Catford JG; Vierheilig H; Piché Y; Lapointe L
    Oecologia; 2002 Jul; 132(2):181-187. PubMed ID: 28547350
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Arbuscular mycorrhizal fungi respond to the substrate pH of their extraradical mycelium by altered growth and root colonization.
    Van Aarle IM; Olsson PA; Söderström B
    New Phytol; 2002 Jul; 155(1):173-182. PubMed ID: 33873298
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of flavones and flavonols on colonization of tomato plants by arbuscular mycorrhizal fungi of the genera Gigaspora and Glomus.
    Scervino JM; Ponce MA; Erra-Bassells R; Bompadre J; Vierheilig H; Ocampo JA; Godeas A
    Can J Microbiol; 2007 Jun; 53(6):702-9. PubMed ID: 17668030
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Combined Inoculation with Multiple Arbuscular Mycorrhizal Fungi Improves Growth, Nutrient Uptake and Photosynthesis in Cucumber Seedlings.
    Chen S; Zhao H; Zou C; Li Y; Chen Y; Wang Z; Jiang Y; Liu A; Zhao P; Wang M; Ahammed GJ
    Front Microbiol; 2017; 8():2516. PubMed ID: 29312217
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photosynthate partitioning in split-root citrus seedlings with mycorrhizal and nonmycorrhizal root systems.
    Koch KE; Johnson CR
    Plant Physiol; 1984 May; 75(1):26-30. PubMed ID: 16663589
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantification of water uptake by arbuscular mycorrhizal hyphae and its significance for leaf growth, water relations, and gas exchange of barley subjected to drought stress.
    Khalvati MA; Hu Y; Mozafar A; Schmidhalter U
    Plant Biol (Stuttg); 2005 Nov; 7(6):706-12. PubMed ID: 16388474
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Host-related variability in arbuscular mycorrhizal fungal structures in roots of Hedera rhombea, Rubus parvifolius, and Rosa multiflora under controlled conditions.
    Matekwor Ahulu E; Andoh H; Nonaka M
    Mycorrhiza; 2007 Mar; 17(2):93-101. PubMed ID: 17111164
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cleavage of sucrose in roots of soybean (Glycine max) colonized by an arbuscular mycorrhizal fungus.
    Schubert A; Allara P; Morte A
    New Phytol; 2004 Feb; 161(2):495-501. PubMed ID: 33873494
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Effects of interspecies difference of arbuscular mycorrhizal fungi on Citrus grandis cv. Changshou Shatian you seedlings vegetative growth and mineral contents].
    Tong R; Yang X; Li D
    Ying Yong Sheng Tai Xue Bao; 2006 Jul; 17(7):1229-33. PubMed ID: 17044497
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Carbon Cost of the Fungal Symbiont Relative to Net Leaf P Accumulation in a Split-Root VA Mycorrhizal Symbiosis.
    Douds DD; Johnson CR; Koch KE
    Plant Physiol; 1988 Feb; 86(2):491-6. PubMed ID: 16665934
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Shared mycorrhizae but distinct communities of other root-associated microbes on co-occurring native and invasive maples.
    DeBellis T; Kembel SW; Lessard JP
    PeerJ; 2019; 7():e7295. PubMed ID: 31392089
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Drought tolerance and antioxidant activities in lavender plants colonized by native drought-tolerant or drought-sensitive Glomus Species.
    Marulanda A; Porcel R; Barea JM; Azcón R
    Microb Ecol; 2007 Oct; 54(3):543-52. PubMed ID: 17431706
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The fungus does not transfer carbon to or between roots in an arbuscular mycorrhizal symbiosis.
    Pfeffer PE; Douds DD; Bücking H; Schwartz DP; Shachar-Hill Y
    New Phytol; 2004 Sep; 163(3):617-627. PubMed ID: 33873744
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Field response of wheat to arbuscular mycorrhizal fungi and drought stress.
    Al-Karaki G; McMichael B; Zak J
    Mycorrhiza; 2004 Aug; 14(4):263-9. PubMed ID: 12942358
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of Cd on mycorrhizal development and enzyme activity of Glomus mosseae and Glomus intraradices in Astragalus sinicus L.
    Li Y; Peng J; Shi P; Zhao B
    Chemosphere; 2009 May; 75(7):894-9. PubMed ID: 19232430
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.