These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 33873423)

  • 1. Comparative responses to water stress in stay-green, rapid- and slow senescing genotypes of the biomass crop, Miscanthus.
    Clifton-Brown JC; Lewandowski I; Bangerth F; Jones MB
    New Phytol; 2002 May; 154(2):335-345. PubMed ID: 33873423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel Miscanthus genotypes selected for different drought tolerance phenotypes show enhanced tolerance across combinations of salinity and drought treatments.
    Stavridou E; Webster RJ; Robson PRH
    Ann Bot; 2019 Oct; 124(4):653-674. PubMed ID: 31665760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological and growth responses to water deficit in the bioenergy crop Miscanthus x giganteus.
    Ings J; Mur LA; Robson PR; Bosch M
    Front Plant Sci; 2013; 4():468. PubMed ID: 24324474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nutrient and drought stress: implications for phenology and biomass quality in miscanthus.
    da Costa RMF; Simister R; Roberts LA; Timms-Taravella E; Cambler AB; Corke FMK; Han J; Ward RJ; Buckeridge MS; Gomez LD; Bosch M
    Ann Bot; 2019 Oct; 124(4):553-566. PubMed ID: 30137291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-structural carbohydrate profiles and ratios between soluble sugars and starch serve as indicators of productivity for a bioenergy grass.
    Purdy SJ; Maddison AL; Cunniff J; Donnison I; Clifton-Brown J
    AoB Plants; 2015 Mar; 7():. PubMed ID: 25829378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extending
    Kalinina O; Nunn C; Sanderson R; Hastings AFS; van der Weijde T; Özgüven M; Tarakanov I; Schüle H; Trindade LM; Dolstra O; Schwarz KU; Iqbal Y; Kiesel A; Mos M; Lewandowski I; Clifton-Brown JC
    Front Plant Sci; 2017; 8():563. PubMed ID: 28469627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-temperature leaf photosynthesis of a Miscanthus germplasm collection correlates positively to shoot growth rate and specific leaf area.
    Jiao X; Kørup K; Andersen MN; Petersen KK; Prade T; Jeżowski S; Ornatowski S; Górynowicz B; Spitz I; Lærke PE; Jørgensen U
    Ann Bot; 2016 Jun; 117(7):1229-39. PubMed ID: 27192706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of chilling-shock responses in four genotypes of Miscanthus reveals the superior tolerance of M. x giganteus compared with M. sinensis and M. sacchariflorus.
    Purdy SJ; Maddison AL; Jones LE; Webster RJ; Andralojc J; Donnison I; Clifton-Brown J
    Ann Bot; 2013 May; 111(5):999-1013. PubMed ID: 23519835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radiation capture and conversion efficiencies of
    Davey CL; Jones LE; Squance M; Purdy SJ; Maddison AL; Cunniff J; Donnison I; Clifton-Brown J
    Glob Change Biol Bioenergy; 2017 Feb; 9(2):385-399. PubMed ID: 28261330
    [No Abstract]   [Full Text] [Related]  

  • 10. Population structure of Miscanthus sacchariflorus reveals two major polyploidization events, tetraploid-mediated unidirectional introgression from diploid M. sinensis, and diversity centred around the Yellow Sea.
    Clark LV; Jin X; Petersen KK; Anzoua KG; Bagmet L; Chebukin P; Deuter M; Dzyubenko E; Dzyubenko N; Heo K; Johnson DA; Jørgensen U; Kjeldsen JB; Nagano H; Peng J; Sabitov A; Yamada T; Yoo JH; Yu CY; Long SP; Sacks EJ
    Ann Bot; 2019 Oct; 124(4):731-748. PubMed ID: 30247525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can the exceptional chilling tolerance of C4 photosynthesis found in Miscanthus × giganteus be exceeded? Screening of a novel Miscanthus Japanese germplasm collection.
    Głowacka K; Jørgensen U; Kjeldsen JB; Kørup K; Spitz I; Sacks EJ; Long SP
    Ann Bot; 2015 May; 115(6):981-90. PubMed ID: 25851133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Species selection determines carbon allocation and turnover in Miscanthus crops: Implications for biomass production and C sequestration.
    Briones MJI; Massey A; Elias DMO; McCalmont JP; Farrar K; Donnison I; McNamara NP
    Sci Total Environ; 2023 Aug; 887():164003. PubMed ID: 37169185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological and transcriptional response to drought stress among bioenergy grass Miscanthus species.
    De Vega JJ; Teshome A; Klaas M; Grant J; Finnan J; Barth S
    Biotechnol Biofuels; 2021 Mar; 14(1):60. PubMed ID: 33676571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological basis of chilling tolerance and early-season growth in miscanthus.
    Fonteyne S; Muylle H; Lootens P; Kerchev P; Van den Ende W; Staelens A; Reheul D; Roldán-Ruiz I
    Ann Bot; 2018 Feb; 121(2):281-295. PubMed ID: 29300823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variation in chilling tolerance for photosynthesis and leaf extension growth among genotypes related to the C4 grass Miscanthus ×giganteus.
    Głowacka K; Adhikari S; Peng J; Gifford J; Juvik JA; Long SP; Sacks EJ
    J Exp Bot; 2014 Oct; 65(18):5267-78. PubMed ID: 25039073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transformation and gene editing in the bioenergy grass Miscanthus.
    Trieu A; Belaffif MB; Hirannaiah P; Manjunatha S; Wood R; Bathula Y; Billingsley RL; Arpan A; Sacks EJ; Clemente TE; Moose SP; Reichert NA; Swaminathan K
    Biotechnol Biofuels Bioprod; 2022 Dec; 15(1):148. PubMed ID: 36578060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How the use of nitrogen fertiliser may switch plant suitability for aphids: the case of Miscanthus, a promising biomass crop, and the aphid pest Rhopalosiphum maidis.
    Bogaert F; Chesnais Q; Catterou M; Rambaud C; Doury G; Ameline A
    Pest Manag Sci; 2017 Aug; 73(8):1648-1654. PubMed ID: 27990748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of SSR Markers Based on Transcriptome Sequencing and Association Analysis with Drought Tolerance in Perennial Grass
    Nie G; Tang L; Zhang Y; Huang L; Ma X; Cao X; Pan L; Zhang X; Zhang X
    Front Plant Sci; 2017; 8():801. PubMed ID: 28559912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Draft genome assembly of the biofuel grass crop
    De Vega J; Donnison I; Dyer S; Farrar K
    F1000Res; 2021; 10():29. PubMed ID: 33732433
    [No Abstract]   [Full Text] [Related]  

  • 20. Development of energy plants from hybrids between
    Zhao X; Xiao L; Mi J; Kang L; Lin C; Chen W; Huang H; Yan J; Yi Z; Sang T; Liu W
    Front Plant Sci; 2022; 13():1017712. PubMed ID: 36726684
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.