These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 33873450)
1. Biodegradation of linuron in a Phaseolus bioassay detected by chlorophyll fluorescence. Hulsen K; Top EM; Höfte M New Phytol; 2002 Jun; 154(3):821-829. PubMed ID: 33873450 [TBL] [Abstract][Full Text] [Related]
2. A chlorophyll a fluorescence-based Lemna minor bioassay to monitor microbial degradation of nanomolar to micromolar concentrations of linuron. Hulsen K; Minne V; Lootens P; Vandecasteele P; Höfte M Environ Microbiol; 2002 Jun; 4(6):327-37. PubMed ID: 12071978 [TBL] [Abstract][Full Text] [Related]
3. A fluorescence-based bioassay for aquatic macrophytes and its suitability for effect analysis of non-photosystem II inhibitors. Küster A; Pohl K; Altenburger R Environ Sci Pollut Res Int; 2007 Sep; 14(6):377-83. PubMed ID: 17993220 [TBL] [Abstract][Full Text] [Related]
4. Effects of acute O3 stress on PSII and PSI photochemistry of sensitive and resistant snap bean genotypes (Phaseolus vulgaris L.), probed by prompt chlorophyll "a" fluorescence and 820 nm modulated reflectance. Salvatori E; Fusaro L; Strasser RJ; Bussotti F; Manes F Plant Physiol Biochem; 2015 Dec; 97():368-77. PubMed ID: 26535554 [TBL] [Abstract][Full Text] [Related]
5. Light piping driven photosynthesis in the soil: Low-light adapted active photosynthetic apparatus in the under-soil hypocotyl segments of bean (Phaseolus vulgaris). Kakuszi A; Sárvári É; Solti Á; Czégény G; Hideg É; Hunyadi-Gulyás É; Bóka K; Böddi B J Photochem Photobiol B; 2016 Aug; 161():422-9. PubMed ID: 27318297 [TBL] [Abstract][Full Text] [Related]
6. Variovorax sp.-mediated biodegradation of the phenyl urea herbicide linuron at micropollutant concentrations and effects of natural dissolved organic matter as supplementary carbon source. Horemans B; Vandermaesen J; Vanhaecke L; Smolders E; Springael D Appl Microbiol Biotechnol; 2013 Nov; 97(22):9837-46. PubMed ID: 23339013 [TBL] [Abstract][Full Text] [Related]
7. Gas exchange and chlorophyll a fluorescence measurements as proxies of X-ray resistance in Phaseolus vulgaris L. Guadagno CR; Pugliese M; Bonanno S; Manco AM; Sodano N; D'Ambrosio N Radiat Environ Biophys; 2019 Nov; 58(4):575-583. PubMed ID: 31463523 [TBL] [Abstract][Full Text] [Related]
8. The quantity and quality of dissolved organic matter as supplementary carbon source impacts the pesticide-degrading activity of a triple-species bacterial biofilm. Horemans B; Vandermaesen J; Breugelmans P; Hofkens J; Smolders E; Springael D Appl Microbiol Biotechnol; 2014 Jan; 98(2):931-43. PubMed ID: 23653124 [TBL] [Abstract][Full Text] [Related]
9. Wavelet analysis of pulse-amplitude-modulated chlorophyll fluorescence for differentiation of plant samples. Guo Y; Zhou Y; Tan J J Theor Biol; 2015 Apr; 370():116-20. PubMed ID: 25665719 [TBL] [Abstract][Full Text] [Related]
10. Low temperature enhances photosynthetic down-regulation in French bean (Phaseolus vulgaris L.) plants. Tsonev T; Velikova V; Georgieva K; Hyde PF; Jones HG Ann Bot; 2003 Feb; 91(3):343-52. PubMed ID: 12547687 [TBL] [Abstract][Full Text] [Related]
11. Sensitivity of macrophyte-dominated freshwater microcosms to chronic levels of the herbicide linuron. I. Primary producers. Van den Brink PJ; Hartgers EM; Fettweis U; Crum SJ; Van Donk E; Brock TC Ecotoxicol Environ Saf; 1997 Oct; 38(1):13-24. PubMed ID: 9352210 [TBL] [Abstract][Full Text] [Related]
13. Minimal pesticide-primed soil inoculum density to secure maximum pesticide degradation efficiency in on-farm biopurification systems. Sniegowski K; Bers K; Ryckeboer J; Jaeken P; Spanoghe P; Springael D Chemosphere; 2012 Aug; 88(9):1114-8. PubMed ID: 22682360 [TBL] [Abstract][Full Text] [Related]
14. Biofilm formation of a bacterial consortium on linuron at micropollutant concentrations in continuous flow chambers and the impact of dissolved organic matter. Horemans B; Hofkens J; Smolders E; Springael D FEMS Microbiol Ecol; 2014 Apr; 88(1):184-94. PubMed ID: 24410802 [TBL] [Abstract][Full Text] [Related]
15. Bioremediation model for atrazine contaminated agricultural soils using phytoremediation (using Phaseolus vulgaris L.) and a locally adapted microbial consortium. Madariaga-Navarrete A; Rodríguez-Pastrana BR; Villagómez-Ibarra JR; Acevedo-Sandoval OA; Perry G; Islas-Pelcastre M J Environ Sci Health B; 2017 Jun; 52(6):367-375. PubMed ID: 28277074 [TBL] [Abstract][Full Text] [Related]
16. Soil Application of Effective Microorganisms (EM) Maintains Leaf Photosynthetic Efficiency, Increases Seed Yield and Quality Traits of Bean ( Iriti M; Scarafoni A; Pierce S; Castorina G; Vitalini S Int J Mol Sci; 2019 May; 20(9):. PubMed ID: 31083418 [TBL] [Abstract][Full Text] [Related]
17. Functional Redundancy of Linuron Degradation in Microbial Communities in Agricultural Soil and Biopurification Systems. Horemans B; Bers K; Ruiz Romero E; Pose Juan E; Dunon V; De Mot R; Springael D Appl Environ Microbiol; 2016 May; 82(9):2843-2853. PubMed ID: 26944844 [TBL] [Abstract][Full Text] [Related]
18. Inverse modeling of pesticide degradation and pesticide-degrading population size dynamics in a bioremediation system: parameterizing the Monod model. Sniegowski K; Mertens J; Diels J; Smolders E; Springael D Chemosphere; 2009 May; 75(6):726-31. PubMed ID: 19232428 [TBL] [Abstract][Full Text] [Related]