These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 33873523)

  • 21. Casparian bands occur in the periderm of Pelargonium hortorum stem and root.
    Meyer CJ; Peterson CA
    Ann Bot; 2011 Apr; 107(4):591-8. PubMed ID: 21239408
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evidence for symplastic involvement in the radial movement of calcium in onion roots.
    Cholewa E; Peterson CA
    Plant Physiol; 2004 Apr; 134(4):1793-802. PubMed ID: 15064381
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The chemical composition of suberin in apoplastic barriers affects radial hydraulic conductivity differently in the roots of rice (Oryza sativa L. cv. IR64) and corn (Zea mays L. cv. Helix).
    Schreiber L; Franke R; Hartmann KD; Ranathunge K; Steudle E
    J Exp Bot; 2005 May; 56(415):1427-36. PubMed ID: 15809280
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prevention of Radial Oxygen Loss Is Associated With Exodermal Suberin Along Adventitious Roots of Annual Wild Species of
    Ejiri M; Shiono K
    Front Plant Sci; 2019; 10():254. PubMed ID: 30915090
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Suberin lamellae in the hypodermis of maize (Zea mays) roots; development and factors affecting the permeability of hypodermal layers.
    Clarkson DT; Robards AW; Stephens JE; Stark M
    Plant Cell Environ; 1987 Jan; 10(1):83-93. PubMed ID: 28692152
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cortical development in roots of the aquatic plant Pontederia cordata (Pontederiaceae).
    Seago JL; Peterson CA; Enstone DE
    Am J Bot; 2000 Aug; 87(8):1116-27. PubMed ID: 10947996
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Root endodermal barrier system contributes to defence against plant-parasitic cyst and root-knot nematodes.
    Holbein J; Franke RB; Marhavý P; Fujita S; Górecka M; Sobczak M; Geldner N; Schreiber L; Grundler FMW; Siddique S
    Plant J; 2019 Oct; 100(2):221-236. PubMed ID: 31322300
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transport of Water and Solutes across Maize Roots Modified by Puncturing the Endodermis (Further Evidence for the Composite Transport Model of the Root).
    Steudle E; Murrmann M; Peterson CA
    Plant Physiol; 1993 Oct; 103(2):335-349. PubMed ID: 12231941
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Developmental anatomy of the root cortex of the basal monocotyledon, Acorus calamus (Acorales, Acoraceae).
    Soukup A; Seago JL; Votrubová O
    Ann Bot; 2005 Sep; 96(3):379-85. PubMed ID: 15965268
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The endodermis as a checkpoint for nutrients.
    Barberon M
    New Phytol; 2017 Mar; 213(4):1604-1610. PubMed ID: 27551946
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Relationships between structural development and the absorption of ions by the root system of Cucurbita pepo.
    Harrison-Murray RS; Clarkson DT
    Planta; 1973 Mar; 114(1):1-16. PubMed ID: 24458660
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analytical electron microscopical investigations on the apoplastic pathways of lanthanum transport in barley roots.
    Lehmann H; Stelzer R; Holzamer S; Kunz U; Gierth M
    Planta; 2000 Nov; 211(6):816-22. PubMed ID: 11144266
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Casparian strips in needles are more solute permeable than endodermal transport barriers in roots of Pinus bungeana.
    Wu X; Lin J; Lin Q; Wang J; Schreiber L
    Plant Cell Physiol; 2005 Nov; 46(11):1799-808. PubMed ID: 16170202
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The endodermis, a tightly controlled barrier for nutrients.
    Doblas VG; Geldner N; Barberon M
    Curr Opin Plant Biol; 2017 Oct; 39():136-143. PubMed ID: 28750257
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Missing Link in Radial Ion Transport: Ion Transporters in the Endodermis.
    Bao Z; Bai J; Cui H; Gong C
    Front Plant Sci; 2019; 10():713. PubMed ID: 31231406
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fourier transform infrared-spectroscopic characterisation of isolated endodermal cell walls from plant roots: chemical nature in relation to anatomical development.
    Zeier J; Schreiber L
    Planta; 1999 Oct; 209(4):537-42. PubMed ID: 10550636
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Root development and structure in seedlings of Ginkgo biloba.
    Bonacorsi NK; Seago JL
    Am J Bot; 2016 Feb; 103(2):355-63. PubMed ID: 26865123
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Extracellular vesiculo-tubular structures associated with suberin deposition in plant cell walls.
    De Bellis D; Kalmbach L; Marhavy P; Daraspe J; Geldner N; Barberon M
    Nat Commun; 2022 Mar; 13(1):1489. PubMed ID: 35304458
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A comparison of suberin monomers from the multiseriate exodermis of Iris germanica during maturation under differing growth conditions.
    Meyer CJ; Peterson CA; Bernards MA
    Planta; 2011 Apr; 233(4):773-86. PubMed ID: 21197545
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rice OsCASP1 orchestrates Casparian strip formation and suberin deposition in small lateral roots to maintain nutrient homeostasis.
    Yang X; Xie H; Weng Q; Liang K; Zheng X; Guo Y; Sun X
    Front Plant Sci; 2022; 13():1007300. PubMed ID: 36600916
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.