These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 33873595)

  • 1. Species level patterns in
    Taylor AFS; Fransson PM; Högberg P; Högberg MN; Plamboeck AH
    New Phytol; 2003 Sep; 159(3):757-774. PubMed ID: 33873595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Patterns of nitrogen and carbon stable isotope ratios in macrofungi, plants and soils in two old-growth conifer forests.
    Trudell SA; Rygiewicz PT; Edmonds RL
    New Phytol; 2004 Nov; 164(2):317-335. PubMed ID: 33873563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Can isotopic fractionation during respiration explain the 13C-enriched sporocarps of ectomycorrhizal and saprotrophic fungi?
    Boström B; Comstedt D; Ekblad A
    New Phytol; 2008; 177(4):1012-1019. PubMed ID: 18086229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vascular plant
    Michelsen A; Quarmby C; Sleep D; Jonasson S
    Oecologia; 1998 Jul; 115(3):406-418. PubMed ID: 28308434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strategies of carbon and nitrogen acquisition by saprotrophic and ectomycorrhizal fungi in Finnish boreal Picea abies-dominated forests.
    Chen J; Heikkinen J; Hobbie EA; Rinne-Garmston KT; Penttilä R; Mäkipää R
    Fungal Biol; 2019 Jun; 123(6):456-464. PubMed ID: 31126422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon use, nitrogen use, and isotopic fractionation of ectomycorrhizal and saprotrophic fungi in natural abundance and 13C-labelled cultures.
    Hobbie EA; Sánchez FS; Rygiewicz PT
    Mycol Res; 2004 Jul; 108(Pt 7):725-36. PubMed ID: 15446705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into nitrogen and carbon dynamics of ectomycorrhizal and saprotrophic fungi from isotopic evidence.
    Hobbie EA; Macko SA; Shugart HH
    Oecologia; 1999 Mar; 118(3):353-360. PubMed ID: 28307279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stable isotope composition (δ(13)C and δ(15)N values) of slime molds: placing bacterivorous soil protozoans in the food web context.
    Tiunov AV; Semenina EE; Aleksandrova AV; Tsurikov SM; Anichkin AE; Novozhilov YK
    Rapid Commun Mass Spectrom; 2015 Aug; 29(16):1465-72. PubMed ID: 26212161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elucidating the nutritional dynamics of fungi using stable isotopes.
    Mayor JR; Schuur EA; Henkel TW
    Ecol Lett; 2009 Feb; 12(2):171-83. PubMed ID: 19049511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Foliar and fungal 15N:14N ratios reflect development of mycorrhizae and nitrogen supply during primary succession: testing analytical models.
    Hobbie EA; Jumpponen A; Trappe J
    Oecologia; 2005 Dec; 146(2):258-68. PubMed ID: 16096847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tricholoma matsutake may take more nitrogen in the organic form than other ectomycorrhizal fungi for its sporocarp development: the isotopic evidence.
    Vaario LM; Sah SP; Norisada M; Narimatsu M; Matsushita N
    Mycorrhiza; 2019 Jan; 29(1):51-59. PubMed ID: 30406843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ectomycorrhizal and saprotrophic fungi respond differently to long-term experimentally increased snow depth in the High Arctic.
    Mundra S; Halvorsen R; Kauserud H; Bahram M; Tedersoo L; Elberling B; Cooper EJ; Eidesen PB
    Microbiologyopen; 2016 Oct; 5(5):856-869. PubMed ID: 27255701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ecophysiology of
    Henn MR; Chapela IH
    Oecologia; 2001 Aug; 128(4):480-487. PubMed ID: 28547392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The ectomycorrhizal status of a tropical black bolete, Phlebopus portentosus, assessed using mycorrhizal synthesis and isotopic analysis.
    Kumla J; Hobbie EA; Suwannarach N; Lumyong S
    Mycorrhiza; 2016 May; 26(4):333-43. PubMed ID: 26671421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fungal functioning in a pine forest: evidence from a ¹⁵N-labeled global change experiment.
    Hobbie EA; van Diepen LTA; Lilleskov EA; Ouimette AP; Finzi AC; Hofmockel KS
    New Phytol; 2014 Mar; 201(4):1431-1439. PubMed ID: 24304469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ectomycorrhizal Fungal Communities in Urban Parks Are Similar to Those in Natural Forests but Shaped by Vegetation and Park Age.
    Hui N; Liu X; Kotze DJ; Jumpponen A; Francini G; Setälä H
    Appl Environ Microbiol; 2017 Dec; 83(23):. PubMed ID: 28970220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Colonizing success of saprotrophic and ectomycorrhizal basidiomycetes on islands.
    Tanesaka E
    Mycologia; 2012; 104(2):345-52. PubMed ID: 22075782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Underground primary succession of ectomycorrhizal fungi in a volcanic desert on Mount Fuji.
    Nara K; Nakaya H; Wu B; Zhou Z; Hogetsu T
    New Phytol; 2003 Sep; 159(3):743-756. PubMed ID: 33873602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isotopic evidence indicates saprotrophy in post-fire Morchella in Oregon and Alaska.
    Hobbie EA; Rice SF; Weber NS; Smith JE
    Mycologia; 2016; 108(4):638-45. PubMed ID: 27153881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wild edible ectomycorrhizal fungi: an underutilized food resource from the rainforests of Tshopo province (Democratic Republic of the Congo).
    Milenge Kamalebo H; De Kesel A
    J Ethnobiol Ethnomed; 2020 Feb; 16(1):8. PubMed ID: 32041671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.