BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 33873612)

  • 1. Growth, production and interspecific competition in Sphagnum: effects of temperature, nitrogen and sulphur treatments on a boreal mire.
    Gunnarsson U; Granberg G; Nilsson M
    New Phytol; 2004 Aug; 163(2):349-359. PubMed ID: 33873612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological responses to nitrogen and sulphur addition and raised temperature in Sphagnum balticum.
    Granath G; Wiedermann MM; Strengbom J
    Oecologia; 2009 Sep; 161(3):481-90. PubMed ID: 19593588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitrogen fertilization reduces Sphagnum production in bog communities.
    Gunnarsson U; Rydin H
    New Phytol; 2000 Sep; 147(3):527-537. PubMed ID: 33862937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inference of future bog succession trajectory from spatial chronosequence of changing aapa mires.
    Kolari THM; Tahvanainen T
    Ecol Evol; 2023 Apr; 13(4):e9988. PubMed ID: 37082320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global change shifts vegetation and plant-parasite interactions in a boreal mire.
    Wiedermann MM; Nordin A; Gunnarsson U; Nilsson MB; Ericson L
    Ecology; 2007 Feb; 88(2):454-64. PubMed ID: 17479763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of temperature on growth and competition between Sphagnum species.
    Breeuwer A; Heijmans MM; Robroek BJ; Berendse F
    Oecologia; 2008 May; 156(1):155-67. PubMed ID: 18283501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photosynthetic performance in Sphagnum transplanted along a latitudinal nitrogen deposition gradient.
    Granath G; Strengbom J; Breeuwer A; Heijmans MM; Berendse F; Rydin H
    Oecologia; 2009 Apr; 159(4):705-15. PubMed ID: 19137328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vascular plants regulate responses of boreal peatland Sphagnum to climate warming and nitrogen addition.
    Le TB; Wu J; Gong Y
    Sci Total Environ; 2022 May; 819():152077. PubMed ID: 34856288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Seasonal and inter-annual variation in the chlorophyll content of three co-existing Sphagnum species exceeds the effect of solar UV reduction in a subarctic peatland.
    Hyyryläinen A; Rautio P; Turunen M; Huttunen S
    Springerplus; 2015; 4():478. PubMed ID: 26361579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental nitrogen addition alters structure and function of a boreal poor fen: Implications for critical loads.
    Wieder RK; Vitt DH; Vile MA; Graham JA; Hartsock JA; Popma JMA; Fillingim H; House M; Quinn JC; Scott KD; Petix M; McMillen KJ
    Sci Total Environ; 2020 Sep; 733():138619. PubMed ID: 32446046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ecophysiological adjustment of two Sphagnum species in response to anthropogenic nitrogen deposition.
    Wiedermann MM; Gunnarsson U; Ericson L; Nordin A
    New Phytol; 2009; 181(1):208-217. PubMed ID: 18811618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental evidence for a persistent spore bank in Sphagnum.
    Sundberg S; Rydin H
    New Phytol; 2000 Oct; 148(1):105-116. PubMed ID: 33863043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Responses of two Sphagnum moss species and Eriophorum vaginatum to enhanced UV-B in a summer of low UV intensity.
    Niemi R; Martikainen PJ; Silvola J; Sonninen E; Wulff A; Holopainen T
    New Phytol; 2002 Dec; 156(3):509-515. PubMed ID: 33873581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct and interaction-mediated effects of environmental changes on peatland bryophytes.
    Bu ZJ; Rydin H; Chen X
    Oecologia; 2011 Jun; 166(2):555-63. PubMed ID: 21170747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Response of C and N cycles to N fertilization in Sphagnum and Molinia-dominated peat mesocosms.
    Leroy F; Gogo S; Guimbaud C; Francez AJ; Zocatelli R; Défarge C; Bernard-Jannin L; Hu Z; Laggoun-Défarge F
    J Environ Sci (China); 2019 Mar; 77():264-272. PubMed ID: 30573090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Axenic in vitro cultivation of 19 peat moss (Sphagnum L.) species as a resource for basic biology, biotechnology, and paludiculture.
    Heck MA; Lüth VM; van Gessel N; Krebs M; Kohl M; Prager A; Joosten H; Decker EL; Reski R
    New Phytol; 2021 Jan; 229(2):861-876. PubMed ID: 32910470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of Sphagnum mosses in the methane cycling of a boreal mire.
    Larmola T; Tuittila ES; Tiirola M; Nykänen H; Martikainen PJ; Yrjälä K; Tuomivirta T; Fritze H
    Ecology; 2010 Aug; 91(8):2356-65. PubMed ID: 20836457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of climate warming on Sphagnum photosynthesis in peatlands depend on peat moisture and species-specific anatomical traits.
    Jassey VEJ; Signarbieux C
    Glob Chang Biol; 2019 Nov; 25(11):3859-3870. PubMed ID: 31502398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sphagnum growth under N saturation: interactive effects of water level and P or K fertilization.
    Gaudig G; Krebs M; Joosten H
    Plant Biol (Stuttg); 2020 May; 22(3):394-403. PubMed ID: 31999043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Data on chemical characteristics of waters in two boreal
    Philippov DA; Yurchenko VV
    Data Brief; 2020 Feb; 28():104928. PubMed ID: 31886359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.