These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 33873694)

  • 1. Optimizing minirhizotron sample frequency for an evergreen and deciduous tree species.
    Tingey DT; Phillips DL; Johnson MG
    New Phytol; 2003 Jan; 157(1):155-161. PubMed ID: 33873694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advancing fine root research with minirhizotrons.
    Johnson MG; Tingey DT; Phillips DL; Storm MJ
    Environ Exp Bot; 2001 Jun; 45(3):263-289. PubMed ID: 11323033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elevated CO(2) and elevated temperature have no effect on Douglas-fir fine-root dynamics in nitrogen-poor soil.
    Johnson MG; Rygiewicz PT; Tingey DT; Phillips DL
    New Phytol; 2006; 170(2):345-56. PubMed ID: 16608459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EnRoot: a narrow-diameter, inexpensive and partially 3D-printable minirhizotron for imaging fine root production.
    Arnaud M; Baird AJ; Morris PJ; Harris A; Huck JJ
    Plant Methods; 2019; 15():101. PubMed ID: 31467587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Application of minirhizotron in fine root studies].
    Shi J; Yu L; Yu S; Han Y; Wang Z; Guo D
    Ying Yong Sheng Tai Xue Bao; 2006 Apr; 17(4):715-9. PubMed ID: 16836108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Remarkable Similarity in Timing of Absorptive Fine-Root Production Across 11 Diverse Temperate Tree Species in a Common Garden.
    Withington JM; Goebel M; Bułaj B; Oleksyn J; Reich PB; Eissenstat DM
    Front Plant Sci; 2020; 11():623722. PubMed ID: 33584764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An improved method for quantifying total fine root decomposition in plantation forests combining measurements of soil coring and minirhizotrons with a mass balance model.
    Li X; Minick KJ; Li T; Williamson JC; Gavazzi M; McNulty S; King JS
    Tree Physiol; 2020 Oct; 40(10):1466-1473. PubMed ID: 32510135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic discrimination of fine roots in minirhizotron images.
    Zeng G; Birchfield ST; Wells CE
    New Phytol; 2008; 177(2):549-557. PubMed ID: 18042202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The impact of material used for minirhizotron tubes for root research.
    Withington JM; Elkin AD; Bułaj B; Olesiński J; Tracy KN; Bouma TJ; Oleksyn J; Anderson LJ; Modrzyński J; Reich PB; Eissenstat DM
    New Phytol; 2003 Dec; 160(3):533-544. PubMed ID: 33873660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Root mass, net primary production and turnover in aspen, jack pine and black spruce forests in Saskatchewan and Manitoba, Canada.
    Steele SJ; Gower ST; Vogel JG; Norman JM
    Tree Physiol; 1997; 17(8_9):577-587. PubMed ID: 14759831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Installation and imaging of thousands of minirhizotrons to phenotype root systems of field-grown plants.
    Rajurkar AB; McCoy SM; Ruhter J; Mulcrone J; Freyfogle L; Leakey ADB
    Plant Methods; 2022 Mar; 18(1):39. PubMed ID: 35346269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconcilable differences: a joint calibration of fine-root turnover times with radiocarbon and minirhizotrons.
    Ahrens B; Hansson K; Solly EF; Schrumpf M
    New Phytol; 2014 Dec; 204(4):932-42. PubMed ID: 25196967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stand development and other intrinsic factors largely control fine-root dynamics with only subtle modifications from resource availability.
    Coleman MD; Aubrey DP
    Tree Physiol; 2018 Dec; 38(12):1805-1819. PubMed ID: 29660101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Specific spatio-temporal dynamics of absorptive fine roots in response to neighbor species identity in a mixed beech-spruce forest.
    Zwetsloot MJ; Goebel M; Paya A; Grams TEE; Bauerle TL
    Tree Physiol; 2019 Dec; 39(11):1867-1879. PubMed ID: 31504991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of soil moisture manipulations on fine root dynamics in a mature balsam fir (Abies balsamea L. Mill.) forest.
    Olesinski J; Lavigne MB; Krasowski MJ
    Tree Physiol; 2011 Mar; 31(3):339-48. PubMed ID: 21489968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Root growth and water use efficiency of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and lodgepole pine (Pinus contorta Dougl.) seedlings.
    Smit J; Van Den Driessche R
    Tree Physiol; 1992 Dec; 11(4):401-10. PubMed ID: 14969945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Short sampling intervals reveal very rapid root turnover in a temperate grassland.
    Stewart AM; Frank DA
    Oecologia; 2008 Sep; 157(3):453-8. PubMed ID: 18566834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Below-ground carbon input to soil is controlled by nutrient availability and fine root dynamics in loblolly pine.
    King JS; Albaugh TJ; Allen HL; Buford M; Strain BR; Dougherty P
    New Phytol; 2002 May; 154(2):389-398. PubMed ID: 33873440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Species-specific partitioning of soil water resources in an old-growth Douglas-fir-western hemlock forest.
    Meinzer FC; Warren JM; Brooks JR
    Tree Physiol; 2007 Jun; 27(6):871-80. PubMed ID: 17331905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fine root dynamics in a developing Populus deltoides plantation.
    Kern CC; Friend AL; Johnson JM; Coleman MD
    Tree Physiol; 2004 Jun; 24(6):651-60. PubMed ID: 15059765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.