These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 33873781)

  • 21. Bordered pit structure and function determine spatial patterns of air-seeding thresholds in xylem of Douglas-fir (Pseudotsuga menziesii; Pinaceae) trees.
    Domec JC; Lachenbruch B; Meinzer FC
    Am J Bot; 2006 Nov; 93(11):1588-600. PubMed ID: 21642104
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Simulation of effects of wood microstructure on water transport.
    Aumann CA; Ford ED
    Tree Physiol; 2006 Mar; 26(3):285-301. PubMed ID: 16356901
    [TBL] [Abstract][Full Text] [Related]  

  • 23. New insights into the mechanisms of water-stress-induced cavitation in conifers.
    Cochard H; Hölttä T; Herbette S; Delzon S; Mencuccini M
    Plant Physiol; 2009 Oct; 151(2):949-54. PubMed ID: 19641033
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Force-displacement measurements of earlywood bordered pits using a mesomechanical tester.
    Zelinka SL; Bourne KJ; Hermanson JC; Glass SV; Costa A; Wiedenhoeft AC
    Plant Cell Environ; 2015 Oct; 38(10):2088-97. PubMed ID: 25754548
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hydraulic and anatomical properties of light bands in Norway spruce compression wood.
    Mayr S; Bardage S; Brändström J
    Tree Physiol; 2006 Jan; 26(1):17-23. PubMed ID: 16203710
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Scaling of angiosperm xylem structure with safety and efficiency.
    Hacke UG; Sperry JS; Wheeler JK; Castro L
    Tree Physiol; 2006 Jun; 26(6):689-701. PubMed ID: 16510385
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modelling the hydrodynamic resistance of bordered pits.
    Lancashire JR; Ennos AR
    J Exp Bot; 2002 Jun; 53(373):1485-93. PubMed ID: 12021296
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Wood anatomy of Elaeagnaceae, with comments on vestured pits, helical thickenings, and systematic relationships.
    Jansen S; Piesschaert F; Smets E
    Am J Bot; 2000 Jan; 87(1):20-8. PubMed ID: 10636826
    [TBL] [Abstract][Full Text] [Related]  

  • 29. How to quantify conduits in wood?
    Scholz A; Klepsch M; Karimi Z; Jansen S
    Front Plant Sci; 2013; 4():56. PubMed ID: 23507674
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Vessels in ferns: structural, ecological, and evolutionary significance.
    Carlquist S; Schneider E
    Am J Bot; 2001 Jan; 88(1):1-13. PubMed ID: 11159121
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The first complete chloroplast genome sequences of Ulmus species by de novo sequencing: Genome comparative and taxonomic position analysis.
    Zuo LH; Shang AQ; Zhang S; Yu XY; Ren YC; Yang MS; Wang JM
    PLoS One; 2017; 12(2):e0171264. PubMed ID: 28158318
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer.
    Lens F; Sperry JS; Christman MA; Choat B; Rabaey D; Jansen S
    New Phytol; 2011 May; 190(3):709-23. PubMed ID: 21054413
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Divergence between ring- and diffuse-porous wood types in broadleaf trees of Changbai Mountains results in substantial differences in hydraulic traits.].
    Yin XH; Hao GY
    Ying Yong Sheng Tai Xue Bao; 2018 Feb; 29(2):352-360. PubMed ID: 29692047
    [TBL] [Abstract][Full Text] [Related]  

  • 34. X-ray computed tomography, electron microscopy, and energy-dispersive X-ray spectroscopy of severed Zelkova serrata roots (Japanese elm tree).
    Park J; Seo D; Kim KW
    Micron; 2022 May; 156():103231. PubMed ID: 35279518
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ion induced changes in the structure of bordered pit membranes.
    Lee J; Holbrook NM; Zwieniecki MA
    Front Plant Sci; 2012; 3():55. PubMed ID: 22645591
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nobody's perfect: can irregularities in pit structure influence vulnerability to cavitation?
    Plavcová L; Jansen S; Klepsch M; Hacke UG
    Front Plant Sci; 2013; 4():453. PubMed ID: 24273549
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of circular bordered pit function I. Angiosperm vessels with homogenous pit membranes.
    Sperry JS; Hacke UG
    Am J Bot; 2004 Mar; 91(3):369-85. PubMed ID: 21653393
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pit membrane structure is highly variable and accounts for a major resistance to water flow through tracheid pits in stems and roots of two boreal conifer species.
    Schulte PJ; Hacke UG; Schoonmaker AL
    New Phytol; 2015 Oct; 208(1):102-13. PubMed ID: 25944400
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Torus-margo pits help conifers compete with angiosperms.
    Pittermann J; Sperry JS; Hacke UG; Wheeler JK; Sikkema EH
    Science; 2005 Dec; 310(5756):1924. PubMed ID: 16373568
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Size and function in conifer tracheids and angiosperm vessels.
    Sperry JS; Hacke UG; Pittermann J
    Am J Bot; 2006 Oct; 93(10):1490-500. PubMed ID: 21642096
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.