These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 33873782)
1. Acclimation of antioxidant pools to the light environment in a natural forest canopy. García-Plazaola JI; Becerril JM; Hernández A; Niinemets Ü; Kollist H New Phytol; 2004 Jul; 163(1):87-97. PubMed ID: 33873782 [TBL] [Abstract][Full Text] [Related]
2. Shoot structure and growth along a vertical profile within a Populus-Tilia canopy. Kull O; Tulva I Tree Physiol; 2002 Nov; 22(15-16):1167-75. PubMed ID: 12414376 [TBL] [Abstract][Full Text] [Related]
3. Responses of foliar photosynthetic electron transport, pigment stoichiometry, and stomatal conductance to interacting environmental factors in a mixed species forest canopy. Niinemets Ü; Bilger W; Kull O; Tenhunen JD Tree Physiol; 1999 Nov; 19(13):839-852. PubMed ID: 10562401 [TBL] [Abstract][Full Text] [Related]
4. Electron transport efficiency at opposite leaf sides: effect of vertical distribution of leaf angle, structure, chlorophyll content and species in a forest canopy. Mänd P; Hallik L; Peñuelas J; Kull O Tree Physiol; 2013 Feb; 33(2):202-10. PubMed ID: 23185067 [TBL] [Abstract][Full Text] [Related]
5. An analysis of light effects on foliar morphology, physiology, and light interception in temperate deciduous woody species of contrasting shade tolerance. Niinemets U; Kull O; Tenhunen JD Tree Physiol; 1998 Oct; 18(10):681-696. PubMed ID: 12651418 [TBL] [Abstract][Full Text] [Related]
6. Stoichiometry of foliar carbon constituents varies along light gradients in temperate woody canopies: implications for foliage morphological plasticity. Niinemets U; Kull O Tree Physiol; 1998 Jul; 18(7):467-479. PubMed ID: 12651358 [TBL] [Abstract][Full Text] [Related]
7. Xanthophyll-cycle pigments and photosynthetic capacity in tropical forest species: a comparative field study on canopy, gap and understory plants. Königer M; Harris GC; Virgo A; Winter K Oecologia; 1995 Nov; 104(3):280-290. PubMed ID: 28307583 [TBL] [Abstract][Full Text] [Related]
8. Investigating the European beech (Fagus sylvatica L.) leaf characteristics along the vertical canopy profile: leaf structure, photosynthetic capacity, light energy dissipation and photoprotection mechanisms. Scartazza A; Di Baccio D; Bertolotto P; Gavrichkova O; Matteucci G Tree Physiol; 2016 Sep; 36(9):1060-76. PubMed ID: 27217526 [TBL] [Abstract][Full Text] [Related]
9. Sensitivity of photosynthetic electron transport to photoinhibition in a temperate deciduous forest canopy: Photosystem II center openness, non-radiative energy dissipation and excess irradiance under field conditions. Niinemets U ; Kull O Tree Physiol; 2001 Aug; 21(12-13):899-914. PubMed ID: 11498337 [TBL] [Abstract][Full Text] [Related]
10. How do barley plants with impaired photosynthetic light acclimation survive under high-light stress? Saeid Nia M; Scholz L; Garibay-Hernández A; Mock HP; Repnik U; Selinski J; Krupinska K; Bilger W Planta; 2023 Aug; 258(4):71. PubMed ID: 37632541 [TBL] [Abstract][Full Text] [Related]
11. The alpha-tocopherol content of leaves of pedunculate oak (Quercus robur L.)--variation over the growing season and along the vertical light gradient in the canopy. Hansen U; Schneiderheinze J; Stadelmann S; Rank B J Plant Physiol; 2003 Jan; 160(1):91-6. PubMed ID: 12685051 [TBL] [Abstract][Full Text] [Related]
12. Variability in Leaf Morphology and Chemical Composition as a Function of Canopy Light Environment in Coexisting Deciduous Trees. Niinemets Ü; Kull O; Tenhunen JD Int J Plant Sci; 1999 Sep; 160(5):837-848. PubMed ID: 10506464 [TBL] [Abstract][Full Text] [Related]
13. Photoprotective carotenoids and antioxidants are more affected by canopy position than by nitrogen supply in 21-year-old Pinus radiata. Posch S; Warren CR; Adams MA; Guttenberger H Funct Plant Biol; 2008 Aug; 35(6):470-482. PubMed ID: 32688804 [TBL] [Abstract][Full Text] [Related]
14. Photosynthetic acclimation to light in woody and herbaceous species: a comparison of leaf structure, pigment content and chlorophyll fluorescence characteristics measured in the field. Hallik L; Niinemets U; Kull O Plant Biol (Stuttg); 2012 Jan; 14(1):88-99. PubMed ID: 21972867 [TBL] [Abstract][Full Text] [Related]
15. Photosynthetic capacity in relation to nitrogen in the canopy of a Quercus robur, Fraxinus angustifolia and Tilia cordata flood plain forest. Kazda M; Salzer J; Reiter I Tree Physiol; 2000 Sep; 20(15):1029-37. PubMed ID: 11305457 [TBL] [Abstract][Full Text] [Related]
16. The acclimation of Tilia cordata stomatal opening in response to light, and stomatal anatomy to vegetational shade and its components. Aasamaa K; Aphalo PJ Tree Physiol; 2017 Feb; 37(2):209-219. PubMed ID: 27672187 [TBL] [Abstract][Full Text] [Related]
17. Acclimation to light and avoidance of photoinhibition in Typha latifolia is associated with high photosynthetic capacity and xanthophyll pigment content. Jespersen E; Brix H; Sorrell BK Funct Plant Biol; 2017 Jul; 44(8):774-784. PubMed ID: 32480606 [TBL] [Abstract][Full Text] [Related]
18. Photosynthetic acclimation to dynamic changes in environmental conditions associated with deciduous overstory phenology in Daphniphyllum humile, an evergreen understory shrub. Katahata S; Naramoto M; Kakubari Y; Mukai Y Tree Physiol; 2005 Apr; 25(4):437-45. PubMed ID: 15687092 [TBL] [Abstract][Full Text] [Related]
19. Multivariate patterns of biochemical responses of Pinus ponderosa trees at field plots in the San Bernardino Mountains, southern California. Tausz M; Bytnerowicz A; Arbaugh MJ; Wonisch A; Grill D Tree Physiol; 2001 Mar; 21(5):329-36. PubMed ID: 11262924 [TBL] [Abstract][Full Text] [Related]
20. Temperature, light and leaf hydraulic conductance of little-leaf linden (Tilia cordata) in a mixed forest canopy. Sellin A; Kupper P Tree Physiol; 2007 May; 27(5):679-88. PubMed ID: 17267359 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]