BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 33873814)

  • 1. CARBON NUTRITION AND THE REGULATION OF UPTAKE HYDROGENASE ACTIVITY IN FREE-LIVING AND SYMBIOTIC ANABAENA CYCADEAE.
    Kumar AP; Perraju BTVV; Singh HN
    New Phytol; 1986 Sep; 104(1):115-120. PubMed ID: 33873814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for ammonia as an inhibitor of heterocyst and nitrogenase formation in the cyanobacterium Anabaena cycadeae.
    Singh HN; Rai UN; Rao VV; Bagchi SN
    Biochem Biophys Res Commun; 1983 Feb; 111(1):180-7. PubMed ID: 6131672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Localization of an uptake hydrogenase in anabaena.
    Peterson RB; Wolk CP
    Plant Physiol; 1978 Apr; 61(4):688-91. PubMed ID: 16660364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. N(2)-Fixation by Freshly Isolated Nostoc from Coralloid Roots of the Cycad Macrozamia riedlei (Fisch. ex Gaud.) Gardn.
    Lindblad P; Atkins CA; Pate JS
    Plant Physiol; 1991 Mar; 95(3):753-9. PubMed ID: 16668050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of hydrogenase activity in vegetative cells of Anabaena variabilis.
    Spiller H; Bookjans G; Shanmugam KT
    J Bacteriol; 1983 Jul; 155(1):129-37. PubMed ID: 6408057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased heterocyst frequency by patN disruption in Anabaena leads to enhanced photobiological hydrogen production at high light intensity and high cell density.
    Masukawa H; Sakurai H; Hausinger RP; Inoue K
    Appl Microbiol Biotechnol; 2017 Mar; 101(5):2177-2188. PubMed ID: 28064366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Colonization of wheat (Triticum vulgare L.) by N
    Gantar M; Kerby NW; Rowell P; Obreht Z; Scrimgeour C
    New Phytol; 1995 Feb; 129(2):337-343. PubMed ID: 33874558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteome Analysis of Enriched Heterocysts from Two Hydrogenase Mutants from Anabaena sp. PCC 7120.
    Kourpa K; Manarolaki E; Lyratzakis A; Strataki V; Rupprecht F; Langer JD; Tsiotis G
    Proteomics; 2019 Oct; 19(19):e1800332. PubMed ID: 31430420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of acetaldehyde on nitrogenase, hydrogenase and photosynthesis in the cyanobacterium Anabaena cylindrica.
    Slatyer B; Daday A; Smith GD
    Biochem J; 1983 Jun; 212(3):755-8. PubMed ID: 6411074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. THE RELATION BETWEEN N2 FIXATION AND H2 METABOLISM IN THE MARINE FILAMENTOUS NONHETEROCYSTOUS CYANOBACTERIUM LYNGBYA AESTUARII CCY 9616(1).
    Ferreira D; Stal LJ; Moradas-Ferreira P; Mendes MV; Tamagnini P
    J Phycol; 2009 Aug; 45(4):898-905. PubMed ID: 27034220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological alterations and regulation of heterocyst and nitrogenase formation in Het(-) Fix(-) mutant strain of Anabaena variabilis.
    Singh B; Chauhan VS; Singh S; Bisen PS
    Curr Microbiol; 2002 Nov; 45(5):315-22. PubMed ID: 12232660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterocyst and nitrogenase development in Anabaena cylindrica.
    Bradley S; Carr NG
    J Gen Microbiol; 1976 Sep; 96(1):175-84. PubMed ID: 824402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement in vivo of hydrogenase-catalysed hydrogen evolution in the presence of nitrogenase enzyme in cyanobacteria.
    Daday A; Lambert GR; Smith GD
    Biochem J; 1979 Jan; 177(1):139-44. PubMed ID: 106842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disruption of the uptake hydrogenase gene, but not of the bidirectional hydrogenase gene, leads to enhanced photobiological hydrogen production by the nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120.
    Masukawa H; Mochimaru M; Sakurai H
    Appl Microbiol Biotechnol; 2002 Apr; 58(5):618-24. PubMed ID: 11956744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inactivation of uptake hydrogenase leads to enhanced and sustained hydrogen production with high nitrogenase activity under high light exposure in the cyanobacterium Anabaena siamensis TISTR 8012.
    Khetkorn W; Lindblad P; Incharoensakdi A
    J Biol Eng; 2012 Oct; 6(1):19. PubMed ID: 23046490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redirecting the electron flow towards the nitrogenase and bidirectional Hox-hydrogenase by using specific inhibitors results in enhanced H2 production in the cyanobacterium Anabaena siamensis TISTR 8012.
    Khetkorn W; Baebprasert W; Lindblad P; Incharoensakdi A
    Bioresour Technol; 2012 Aug; 118():265-71. PubMed ID: 22705533
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Wang L; Lin GM; Niu TC; Zhang SR; Zhang JY; Tang GF; Chen W; Zhang CC
    J Bacteriol; 2019 Nov; 201(21):. PubMed ID: 31405917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of nitrogenase in mutants of the cyanobacterium Anabaena sp. strain PCC 7120 affected in heterocyst development or metabolism.
    Ernst A; Black T; Cai Y; Panoff JM; Tiwari DN; Wolk CP
    J Bacteriol; 1992 Oct; 174(19):6025-32. PubMed ID: 1328150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation of cyanobacterial heterocysts with high and sustained dinitrogen-fixation capacity supported by endogenous reductants.
    Jensen BB; Cox RP; Burris RH
    Arch Microbiol; 1986 Aug; 145(3):241-7. PubMed ID: 3094473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyanobacterial H(2) production -- a comparative analysis.
    Schütz K; Happe T; Troshina O; Lindblad P; Leitão E; Oliveira P; Tamagnini P
    Planta; 2004 Jan; 218(3):350-9. PubMed ID: 14564521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.