These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 33873984)

  • 1. Hyphal transport of
    Johansen A; Jakobsen I; Jensen ES
    New Phytol; 1992 Oct; 122(2):281-288. PubMed ID: 33873984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acquisition of nitrogen by external hyphae of arbuscular mycorrhizal fungi associated with Zea mays L.
    Frey B; Schüepp H
    New Phytol; 1993 Jun; 124(2):221-230. PubMed ID: 33874357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Phosphorus transfer between mixed poplar and black locust seedlings].
    He W; Jia L; Hao B; Wen X; Zhai M
    Ying Yong Sheng Tai Xue Bao; 2003 Apr; 14(4):481-6. PubMed ID: 12920885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Benomyl inhibits phosphorus transport but not fungal alkaline phosphatase activity in a Glomus-cucumber symbiosis.
    Larsen J; Thingstrup I; Jakobsen I; Rosendahl S
    New Phytol; 1996 Jan; 132(1):127-133. PubMed ID: 33863061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantification of water uptake by arbuscular mycorrhizal hyphae and its significance for leaf growth, water relations, and gas exchange of barley subjected to drought stress.
    Khalvati MA; Hu Y; Mozafar A; Schmidhalter U
    Plant Biol (Stuttg); 2005 Nov; 7(6):706-12. PubMed ID: 16388474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transfer of symbiotically fixed nitrogen from berseem (Trifolium alexandrinum L.) to maize via vesicular-arbuscular mycorrhizal hyphae.
    Frey B; Schüepp H
    New Phytol; 1992 Nov; 122(3):447-454. PubMed ID: 33874217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitrogen transfer and assimilation between the arbuscular mycorrhizal fungus Glomus intraradices Schenck & Smith and Ri T-DNA roots of Daucus carota L. in an in vitro compartmented system.
    Toussaint JP; St-Arnaud M; Charest C
    Can J Microbiol; 2004 Apr; 50(4):251-60. PubMed ID: 15213749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphate pool dynamics in the arbuscular mycorrhizal fungus Glomus intraradices studied by in vivo
    Viereck N; Hansen PE; Jakobsen I
    New Phytol; 2004 Jun; 162(3):783-794. PubMed ID: 33873762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitrate depletion and pH changes induced by the extraradical mycelium of the arbuscular mycorrhizal fungus Glomus intraradices grown in monoxenic culture.
    Bago B; Vierheilig H; Piché Y; Azcón-Aguilar C
    New Phytol; 1996 Jun; 133(2):273-280. PubMed ID: 29681069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of the external mycelial network in the effect of soil disturbance upon vesicular-arbuscular mycorrhizal colonization of maize.
    Evans DG; Miller MH
    New Phytol; 1990 Jan; 114(1):65-71. PubMed ID: 33874297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recently fixed carbon allocation in strawberry plants and concurrent inorganic nitrogen uptake through arbuscular mycorrhizal fungi.
    Tomè E; Tagliavini M; Scandellari F
    J Plant Physiol; 2015 May; 179():83-9. PubMed ID: 25841208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material.
    Leigh J; Hodge A; Fitter AH
    New Phytol; 2009; 181(1):199-207. PubMed ID: 18811615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of a mycophagous Collembola on the symbioses between Trifolium subterraneum and three arbuscular mycorrhizal fungi.
    Larsen J; Jakobsen I
    New Phytol; 1996 Jun; 133(2):295-302. PubMed ID: 29681070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uranium uptake and translocation by the arbuscular mycorrhizal fungus, Glomus intraradices, under root-organ culture conditions.
    Rufyikiri G; Thiry Y; Wang L; Delvaux B; Declerck S
    New Phytol; 2002 Nov; 156(2):275-281. PubMed ID: 33873284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suppression of the biocontrol agent trichoderma harzianum by mycelium of the arbuscular mycorrhizal fungus glomus intraradices in root-free soil.
    Green H; Larsen J; Olsson PA; Jensen DF; Jakobsen I
    Appl Environ Microbiol; 1999 Apr; 65(4):1428-34. PubMed ID: 10103232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uptake of cadmium from an experimentally contaminated calcareous soil by arbuscular mycorrhizal maize (Zea mays L.).
    Chen BD; Liu Y; Shen H; Li XL; Christie P
    Mycorrhiza; 2004 Dec; 14(6):347-54. PubMed ID: 14661105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitrogen and phosphorus acquisition by the mycelium of the ectomycorrhizal fungus Paxillus involutus and its effect on host nutrition.
    Brandes B; Godbold DL; Kuhn AJ; Jentschke G
    New Phytol; 1998 Dec; 140(4):735-743. PubMed ID: 33862956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Secretion of acid phosphatase from extraradical hyphae of the arbuscular mycorrhizal fungus Rhizophagus clarus is regulated in response to phosphate availability.
    Sato T; Hachiya S; Inamura N; Ezawa T; Cheng W; Tawaraya K
    Mycorrhiza; 2019 Nov; 29(6):599-605. PubMed ID: 31745622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of 233U and 33P uptake and translocation by the arbuscular mycorrhizal fungus Glomus intraradices in root organ culture conditions.
    Rufyikiri G; Declerck S; Thiry Y
    Mycorrhiza; 2004 Jul; 14(3):203-7. PubMed ID: 15197636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon Cost of the Fungal Symbiont Relative to Net Leaf P Accumulation in a Split-Root VA Mycorrhizal Symbiosis.
    Douds DD; Johnson CR; Koch KE
    Plant Physiol; 1988 Feb; 86(2):491-6. PubMed ID: 16665934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.