These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 33874014)

  • 1. The influence of photoperiod on incorporation of precursors into tocopherols and plastoquinone in Xanthium strumarium L.
    Torres JM; Laidman DL; Gaunt JK
    New Phytol; 1989 Mar; 111(3):397-401. PubMed ID: 33874014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosynthesis of phytoquinones. Biosynthetic origins of the nuclei and satellite methyl groups of plastoquinone, tocopherols and tocopherolquinones in maize shoots, bean shoots and ivy leaves.
    Whistance GR; Threlfall DR
    Biochem J; 1968 Oct; 109(4):577-95. PubMed ID: 5683508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of photoperiod on endogenous gamma-tocopherol and plastochromanol in leaves of Xanthium strumarium L. (cocklebur).
    Battle RW; Gaunt JK; Laidman DL
    Biochem Soc Trans; 1976; 4(3):484-6. PubMed ID: 1001705
    [No Abstract]   [Full Text] [Related]  

  • 4. The relationship between floral induction and gamma-tocopherol concentrations in leaves of Xanthium strumarium L.
    Battle RW; Laidman DL; Gaunt JK
    Biochem Soc Trans; 1977; 5(1):322-4. PubMed ID: 892200
    [No Abstract]   [Full Text] [Related]  

  • 5. Plastoquinol as a singlet oxygen scavenger in photosystem II.
    Kruk J; Trebst A
    Biochim Biophys Acta; 2008 Feb; 1777(2):154-62. PubMed ID: 18005659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The polyamines of Xanthium strumarium and their response to photoperiod.
    Hamasaki N; Galston AW
    Photochem Photobiol; 1990; 52(1):181-6. PubMed ID: 11537864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Observations on the biosynthesis of phytoterpenoid quinone and chromanol nuclei.
    Whistance GR; Threlfall DR; Goodwin TW
    Biochem J; 1967 Oct; 105(1):145-54. PubMed ID: 6060446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolism of Mevalonic Acid in Vegetative and Induced Plants of Xanthium strumarium.
    Bledsoe CS
    Plant Physiol; 1978 Nov; 62(5):683-6. PubMed ID: 16660583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flowering in Xanthium strumarium: INITIATION AND DEVELOPMENT OF FEMALE INFLORESCENCE AND SEX EXPRESSION.
    Leonard M; Kinet JM; Bodson M; Havelange A; Jacqmard A; Bernier G
    Plant Physiol; 1981 Jun; 67(6):1245-9. PubMed ID: 16661844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosynthesis of phytoquinones. Incorporation of L-[Me-14C,3H]methionine into terpenoid quinones and chromanols in maize shoots.
    Threlfall DR; Whistance GR; Goodwin TW
    Biochem J; 1968 Jan; 106(1):107-12. PubMed ID: 5721452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Age at flowering differentially affects vegetative and reproductive responses of a determinate annual plant to elevated carbon dioxide.
    Lewis JD; Wang X; Griffin KL; Tissue DT
    Oecologia; 2003 Apr; 135(2):194-201. PubMed ID: 12698340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tocopherols in Sunflower Seedlings under Light and Dark Conditions.
    del Moral L; Pérez-Vich B; Velasco L
    ScientificWorldJournal; 2015; 2015():146782. PubMed ID: 26347898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biosynthesis, accumulation and emission of carotenoids, alpha-tocopherol, plastoquinone, and isoprene in leaves under high photosynthetic irradiance.
    Lichtenthaler HK
    Photosynth Res; 2007 May; 92(2):163-79. PubMed ID: 17634750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoperiodic control in vivo and in vitro of tocopherol oxidase in Xanthium strumarium L [proceedings].
    Gaunt JK; Plumpton ES
    Biochem Soc Trans; 1980 Apr; 8(2):187-8. PubMed ID: 7371962
    [No Abstract]   [Full Text] [Related]  

  • 15. Highly divergent methyltransferases catalyze a conserved reaction in tocopherol and plastoquinone synthesis in cyanobacteria and photosynthetic eukaryotes.
    Cheng Z; Sattler S; Maeda H; Sakuragi Y; Bryant DA; DellaPenna D
    Plant Cell; 2003 Oct; 15(10):2343-56. PubMed ID: 14508009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of elevated atmospheric CO2 concentration on leaf dark respiration of Xanthium strumarium in light and in darkness.
    Wang X; Lewis JD; Tissue DT; Seemann JR; Griffin KL
    Proc Natl Acad Sci U S A; 2001 Feb; 98(5):2479-84. PubMed ID: 11226264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control in vitro of tocopherol oxidase by light in extracts from leaves of Xanthium strumarium L [proceedings].
    Gaunt JK; Plumpton ES
    Biochem Soc Trans; 1978; 6(1):143-5. PubMed ID: 640146
    [No Abstract]   [Full Text] [Related]  

  • 18. Abscisic Acid Biosynthesis in Leaves and Roots of Xanthium strumarium.
    Creelman RA; Gage DA; Stults JT; Zeevaart JA
    Plant Physiol; 1987 Nov; 85(3):726-32. PubMed ID: 16665768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Twilight effect: initiating dark measurement in photoperiodism of xanthium.
    Salisbury FB
    Plant Physiol; 1981 Jun; 67(6):1230-8. PubMed ID: 16661842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential accumulation of tocochromanols in photosynthetic and non-photosynthetic tissues of strawberry plants subjected to reiterated water deficit.
    Casadesús A; Arabia A; Pujolriu R; Munné-Bosch S
    Plant Physiol Biochem; 2020 Oct; 155():868-876. PubMed ID: 32896766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.