These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 33874032)

  • 21. A ten-year study on the physiology of two Spanish grapevine cultivars under field conditions: effects of water availability from leaf photosynthesis to grape yield and quality.
    Medrano H; Escalona JM; Cifre J; Bota J; Flexas J
    Funct Plant Biol; 2003 Jul; 30(6):607-619. PubMed ID: 32689046
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Acclimation of the Grapevine
    Kolyva F; Nikolopoulos D; Bresta P; Liakopoulos G; Karabourniotis G; Rhizopoulou S
    Plants (Basel); 2023 Nov; 12(23):. PubMed ID: 38068627
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modelling photosynthetic responses to temperature of grapevine (Vitis vinifera cv. Semillon) leaves on vines grown in a hot climate.
    Greer DH; Weedon MM
    Plant Cell Environ; 2012 Jun; 35(6):1050-64. PubMed ID: 22150771
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Water relations and gas exchange of Acer saccharum seedlings in contrasting natural light and water regimes.
    Ellsworth DS; Reich PB
    Tree Physiol; 1992 Jan; 10(1):1-20. PubMed ID: 14969871
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Responses of agricultural crops of free-air CO2 enrichment].
    Kimball BA; Zhu J; Cheng L; Kobayashi K; Bindi M
    Ying Yong Sheng Tai Xue Bao; 2002 Oct; 13(10):1323-38. PubMed ID: 12557686
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A functional-structural plant model that simulates whole- canopy gas exchange of grapevine plants (Vitis vinifera L.) under different training systems.
    Prieto JA; Louarn G; Perez Peña J; Ojeda H; Simonneau T; Lebon E
    Ann Bot; 2020 Sep; 126(4):647-660. PubMed ID: 31837221
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Water deficit in field-grown Gossypium hirsutum primarily limits net photosynthesis by decreasing stomatal conductance, increasing photorespiration, and increasing the ratio of dark respiration to gross photosynthesis.
    Chastain DR; Snider JL; Collins GD; Perry CD; Whitaker J; Byrd SA
    J Plant Physiol; 2014 Nov; 171(17):1576-85. PubMed ID: 25151126
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Impact of Meloidogyne incognita on Physiological Efficiency of Vitis vinifera.
    Melakeberhan H; Ferris H
    J Nematol; 1989 Jan; 21(1):74-80. PubMed ID: 19287578
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of inter-varietal variation in sugar hydrolysis and transport on sugar content and photosynthesis in Vitis vinifera L. leaves.
    Ren R; Wan Z; Chen H; Zhang Z
    Plant Physiol Biochem; 2022 Oct; 189():1-13. PubMed ID: 36030618
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genetic variation in stomatal and biochemical limitations to photosynthesis in the annual plant, Polygonum arenastrum.
    Geber MA; Dawson TE
    Oecologia; 1997 Feb; 109(4):535-546. PubMed ID: 28307337
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Carbon fixation in eucalypts in the field : Analysis of diurnal variations in photosynthetic capacity.
    Küppers M; Wheeler AM; Küppers BI; Kirschbaum MU; Farquhar GD
    Oecologia; 1986 Sep; 70(2):273-282. PubMed ID: 28311669
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Relationships between leaf conductance to CO2 diffusion and photosynthesis in micropropagated grapevine plants, before and after ex vitro acclimatization.
    Fila G; Badeck FW; Meyer S; Cerovic Z; Ghashghaie J
    J Exp Bot; 2006; 57(11):2687-95. PubMed ID: 16837534
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Carbon balance, partitioning and photosynthetic acclimation in fruit-bearing grapevine (Vitis vinifera L. cv. Tempranillo) grown under simulated climate change (elevated CO2, elevated temperature and moderate drought) scenarios in temperature gradient greenhouses.
    Salazar-Parra C; Aranjuelo I; Pascual I; Erice G; Sanz-Sáez Á; Aguirreolea J; Sánchez-Díaz M; Irigoyen JJ; Araus JL; Morales F
    J Plant Physiol; 2015 Feb; 174():97-109. PubMed ID: 25462972
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Net CO(2) Assimilation and Carbohydrate Partitioning of Grapevine Leaves in Response to Trunk Girdling and Gibberellic Acid Application.
    Roper TR; Williams LE
    Plant Physiol; 1989 Apr; 89(4):1136-40. PubMed ID: 16666676
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improving Net Photosynthetic Rate and Rooting Depth of Grapevines Through a Novel Irrigation Strategy in a Semi-Arid Climate.
    Ma X; Jacoby PW; Sanguinet KA
    Front Plant Sci; 2020; 11():575303. PubMed ID: 32973860
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Above- and below-ground environmental influences on leaf conductance ofCeanothus thyrsiflorus growing in a chaparral environment: drought response and the role of abscisic acid.
    Tenhunen JD; Hanano R; Abril M; Weiler EW; Hartung W
    Oecologia; 1994 Sep; 99(3-4):306-314. PubMed ID: 28313885
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Physiological effects of kaolin applications in well-irrigated and water-stressed walnut and almond trees.
    Rosati A; Metcalf SG; Buchner RP; Fulton AE; Lampinen BD
    Ann Bot; 2006 Jul; 98(1):267-75. PubMed ID: 16735404
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A leaf gas exchange model that accounts for intra-canopy variability by considering leaf nitrogen content and local acclimation to radiation in grapevine (Vitis vinifera L.).
    Prieto JA; Louarn G; Perez Peña J; Ojeda H; Simonneau T; Lebon E
    Plant Cell Environ; 2012 Jul; 35(7):1313-28. PubMed ID: 22329397
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Midday depression of leaf CO2 exchange within the crown of Dipterocarpus sublamellatus in a lowland dipterocarp forest in Peninsular Malaysia.
    Kosugi Y; Takanashi S; Matsuo N; Nik AR
    Tree Physiol; 2009 Apr; 29(4):505-15. PubMed ID: 19203974
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of plant water status on the production of C13-norisoprenoid precursors in Vitis vinifera L. Cv. cabernet sauvignon grape berries.
    Bindon KA; Dry PR; Loveys BR
    J Agric Food Chem; 2007 May; 55(11):4493-500. PubMed ID: 17469842
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.