These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 33874341)

  • 1. Infection structures of fungal plant pathogens - a cytological and physiological evaluation.
    Mendgen K; Deising H
    New Phytol; 1993 Jun; 124(2):193-213. PubMed ID: 33874341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell cycle and cell death are not necessary for appressorium formation and plant infection in the fungal plant pathogen Colletotrichum gloeosporioides.
    Nesher I; Barhoom S; Sharon A
    BMC Biol; 2008 Feb; 6():9. PubMed ID: 18275611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphogenesis and mechanisms of penetration by plant pathogenic fungi.
    Mendgen K; Hahn M; Deising H
    Annu Rev Phytopathol; 1996; 34():367-86. PubMed ID: 15012548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differences between appressoria formed by germ tubes and appressorium-like structures developed by hyphal tips in Magnaporthe oryzae.
    Kong LA; Li GT; Liu Y; Liu MG; Zhang SJ; Yang J; Zhou XY; Peng YL; Xu JR
    Fungal Genet Biol; 2013 Jul; 56():33-41. PubMed ID: 23591122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nuclear and structural dynamics during the establishment of a specialized effector-secreting cell by Magnaporthe oryzae in living rice cells.
    Shipman EN; Jones K; Jenkinson CB; Kim DW; Zhu J; Khang CH
    BMC Cell Biol; 2017 Jan; 18(1):11. PubMed ID: 28125974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional analysis of lipid metabolism in Magnaporthe grisea reveals a requirement for peroxisomal fatty acid beta-oxidation during appressorium-mediated plant infection.
    Wang ZY; Soanes DM; Kershaw MJ; Talbot NJ
    Mol Plant Microbe Interact; 2007 May; 20(5):475-91. PubMed ID: 17506326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PDE1 encodes a P-type ATPase involved in appressorium-mediated plant infection by the rice blast fungus Magnaporthe grisea.
    Balhadère PV; Talbot NJ
    Plant Cell; 2001 Sep; 13(9):1987-2004. PubMed ID: 11549759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kelch repeat protein Clakel2p and calcium signaling control appressorium development in Colletotrichum lagenarium.
    Sakaguchi A; Miyaji T; Tsuji G; Kubo Y
    Eukaryot Cell; 2008 Jan; 7(1):102-11. PubMed ID: 18039945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bypassing both surface attachment and surface recognition requirements for appressorium formation by overactive ras signaling in Magnaporthe oryzae.
    Zhou X; Zhao X; Xue C; Dai Y; Xu JR
    Mol Plant Microbe Interact; 2014 Sep; 27(9):996-1004. PubMed ID: 24835254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plant pathogenic fungi Colletotrichum and Magnaporthe share a common G
    Fukada F; Kodama S; Nishiuchi T; Kajikawa N; Kubo Y
    New Phytol; 2019 Jun; 222(4):1909-1923. PubMed ID: 30715740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mitogen-activated protein kinase gene MAF1 is essential for the early differentiation phase of appressorium formation in Colletotrichum lagenarium.
    Kojima K; Kikuchi T; Takano Y; Oshiro E; Okuno T
    Mol Plant Microbe Interact; 2002 Dec; 15(12):1268-76. PubMed ID: 12481999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MoCDC14 is important for septation during conidiation and appressorium formation in Magnaporthe oryzae.
    Li C; Cao S; Zhang C; Zhang Y; Zhang Q; Xu JR; Wang C
    Mol Plant Pathol; 2018 Feb; 19(2):328-340. PubMed ID: 27935243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of Magnaporthe grisea avirulence gene ACE1 is connected to the initiation of appressorium-mediated penetration.
    Fudal I; Collemare J; Böhnert HU; Melayah D; Lebrun MH
    Eukaryot Cell; 2007 Mar; 6(3):546-54. PubMed ID: 17142568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two PAK kinase genes, CHM1 and MST20, have distinct functions in Magnaporthe grisea.
    Li L; Xue C; Bruno K; Nishimura M; Xu JR
    Mol Plant Microbe Interact; 2004 May; 17(5):547-56. PubMed ID: 15141959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Independent genetic mechanisms mediate turgor generation and penetration peg formation during plant infection in the rice blast fungus.
    Park G; Bruno KS; Staiger CJ; Talbot NJ; Xu JR
    Mol Microbiol; 2004 Sep; 53(6):1695-707. PubMed ID: 15341648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PLS1, a gene encoding a tetraspanin-like protein, is required for penetration of rice leaf by the fungal pathogen Magnaporthe grisea.
    Clergeot PH; Gourgues M; Cots J; Laurans F; Latorse MP; Pepin R; Tharreau D; Notteghem JL; Lebrun MH
    Proc Natl Acad Sci U S A; 2001 Jun; 98(12):6963-8. PubMed ID: 11391010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plant infection and the establishment of fungal biotrophy.
    Mendgen K; Hahn M
    Trends Plant Sci; 2002 Aug; 7(8):352-6. PubMed ID: 12167330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MPG1, a gene encoding a fungal hydrophobin of Magnaporthe grisea, is involved in surface recognition.
    Beckerman JL; Ebbole DJ
    Mol Plant Microbe Interact; 1996 Aug; 9(6):450-6. PubMed ID: 8755621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The tetraspanin gene ClPLS1 is essential for appressorium-mediated penetration of the fungal pathogen Colletotrichum lindemuthianum.
    Veneault-Fourrey C; Parisot D; Gourgues M; Laugé R; Lebrun MH; Langin T
    Fungal Genet Biol; 2005 Apr; 42(4):306-18. PubMed ID: 15749050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Multifaceted Roles of Fungal Cutinases during Infection.
    Arya GC; Cohen H
    J Fungi (Basel); 2022 Feb; 8(2):. PubMed ID: 35205953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.