These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 33874350)

  • 1. Nitrogen translocation between Alnus glutinosa (L.) Gaertn. seedlings inoculated with Frankia sp. and Pinus contorta Doug, ex Loud seedlings connected by a common ectomycorrhizal mycelium.
    Arnebrant K; Ek H; Finlay RD; Söderström B
    New Phytol; 1993 Jun; 124(2):231-242. PubMed ID: 33874350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitrogen fixation by Alnus incana and nitrogen transfer from A. incana to Pinus sylvestris influenced by macronutrients and ectomycorrhiza.
    Ekblad A; Huss-Danell K
    New Phytol; 1995 Dec; 131(4):453-459. PubMed ID: 33863124
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Schwob G; Roy M; Pozzi AC; Herrera-Belaroussi A; Fernandez MP
    Appl Environ Microbiol; 2018 Dec; 84(23):. PubMed ID: 30217853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of substrate pH on carbon translocation in ectomycorrhizal and non-mycorrhizal pine seedlings.
    Erland S; Finlay R; Söderström B
    New Phytol; 1991 Oct; 119(2):235-242. PubMed ID: 33874136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Colonization by nitrogen-fixing Frankia bacteria causes short-term increases in herbivore susceptibility in red alder (Alnus rubra) seedlings.
    Ballhorn DJ; Elias JD; Balkan MA; Fordyce RF; Kennedy PG
    Oecologia; 2017 Jun; 184(2):497-506. PubMed ID: 28528390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resistance to an ineffective Frankia strain type in Alnus glutinosa (L.) Gaertn.
    VAN Dijk C; Sluimer A
    New Phytol; 1994 Nov; 128(3):497-504. PubMed ID: 33874566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fungal biomass in roots and extramatrical mycelium in relation to macronutrients and plant biomass of ectomycorrhizal Pinus sylvestris and Alnus incana.
    Ekblad A; Wallander H; Carlsson R; Huss-Danell K
    New Phytol; 1995 Dec; 131(4):443-451. PubMed ID: 33863123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergistic effect of Glomus intraradices and Frankia spp. on the growth and stress recovery of Alnus glutinosa in an alkaline anthropogenic sediment.
    Oliveira RS; Castro PM; Dodd JC; Vosátka M
    Chemosphere; 2005 Sep; 60(10):1462-70. PubMed ID: 16054916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interdependence of phosphorus, nitrogen, potassium and magnesium translocation by the ectomycorrhizal fungus Paxillus involutus.
    Jentschke G; Brandes B; Kuhn AJ; Schröder WH; Godbold DL
    New Phytol; 2001 Feb; 149(2):327-337. PubMed ID: 33874636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mycelial production, spread and root colonisation by the ectomycorrhizal fungi Hebeloma crustuliniforme and Paxillus involutus under elevated atmospheric CO2.
    Fransson PM; Taylor AF; Finlay RD
    Mycorrhiza; 2005 Jan; 15(1):25-31. PubMed ID: 14750001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Primary metabolism in N2-fixing Alnus incana-Frankia symbiotic root nodules studied with 15N and 31P nuclear magnetic resonance spectroscopy.
    Lundberg P; Lundquist PO
    Planta; 2004 Aug; 219(4):661-72. PubMed ID: 15179512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feedback Regulation of N Fixation in
    Hay AE; Herrera-Belaroussi A; Rey M; Fournier P; Normand P; Boubakri H
    Mol Plant Microbe Interact; 2020 Mar; 33(3):499-508. PubMed ID: 31916486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitrogen and phosphorus acquisition by the mycelium of the ectomycorrhizal fungus Paxillus involutus and its effect on host nutrition.
    Brandes B; Godbold DL; Kuhn AJ; Jentschke G
    New Phytol; 1998 Dec; 140(4):735-743. PubMed ID: 33862956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The time-course of disease suppression and antibiosis by the ectomycorrhizal fungus Paxillus involutus.
    Duchesne LC; Peterson RL; Ellis BE
    New Phytol; 1989 Apr; 111(4):693-698. PubMed ID: 33874068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological effects of major up-regulated Alnus glutinosa peptides on Frankia sp. ACN14a.
    Carro L; Pujic P; Alloisio N; Fournier P; Boubakri H; Poly F; Rey M; Heddi A; Normand P
    Microbiology (Reading); 2016 Jul; 162(7):1173-1184. PubMed ID: 27082768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Short-term phosphorus uptake rates in mycorrhizal and non-mycorrhizal roots of intact Pinus sylvestris seedlings.
    Colpaert JV; VAN Tichelen KK; VAN Assche JA; VAN Laere A
    New Phytol; 1999 Sep; 143(3):589-597. PubMed ID: 33862896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterogeneity of fungal and plant enzyme expression in intact Scots pine-Suillus bovinus and -Paxillus involutus mycorrhizospheres developed in natural forest humus.
    Timonen S; Sen R
    New Phytol; 1998 Feb; 138(2):355-366. PubMed ID: 33863091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of elevated carbon dioxide concentration on growth and nitrogen fixation in Alnus glutinosa in a long-term field experiment.
    Temperton VM; Grayston SJ; Jackson G; Barton CV; Millard P; Jarvis PG
    Tree Physiol; 2003 Oct; 23(15):1051-9. PubMed ID: 12975129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First evidences that the ectomycorrhizal fungus Paxillus involutus mobilizes nitrogen and carbon from saprotrophic fungus necromass.
    Akroume E; Maillard F; Bach C; Hossann C; Brechet C; Angeli N; Zeller B; Saint-André L; Buée M
    Environ Microbiol; 2019 Jan; 21(1):197-208. PubMed ID: 30307107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ectomycorrhizas and cadmium toxicity in Norway spruce seedlings.
    Jentschke G; Winter S; Godbold DL
    Tree Physiol; 1999 Jan; 19(1):23-30. PubMed ID: 12651328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.