These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 33874350)
41. Ectomycorrhizal fungi and exogenous auxins influence root and mycorrhiza formation of Scots pine hypocotyl cuttings in vitro. Niemi K; Vuorinen T; Ernstsen A; Häggman H Tree Physiol; 2002 Dec; 22(17):1231-9. PubMed ID: 12464576 [TBL] [Abstract][Full Text] [Related]
42. Alder and the Golden Fleece: high diversity of Roy M; Pozzi AC; Gareil R; Nagati M; Manzi S; Nouioui I; Sharikadze N; Jargeat P; Gryta H; Moreau PA; Fernandez MP; Gardes M PeerJ; 2017; 5():e3479. PubMed ID: 28729950 [TBL] [Abstract][Full Text] [Related]
43. Pathway and sink activity for photosynthate translocation in Pisolithus extraradical mycelium of ectomycorrhizal Pinus thunbergii seedlings. Teramoto M; Wu B; Hogetsu T Mycorrhiza; 2016 Jul; 26(5):453-64. PubMed ID: 26861479 [TBL] [Abstract][Full Text] [Related]
44. Carbon Dioxide Fixation in Roots and Nodules of Alnus glutinosa: I. Role of Phosphoenolpyruvate Carboxylase and Carbamyl Phosphate Synthetase in Dark CO(2) Fixation, Citrulline Synthesis, and N(2) Fixation. McClure PR; Coker GT; Schubert KR Plant Physiol; 1983 Mar; 71(3):652-7. PubMed ID: 16662882 [TBL] [Abstract][Full Text] [Related]
45. Saprophytic growth of inoculated Frankia sp. in soil microcosms. Mirza BS; Welsh A; Hahn D FEMS Microbiol Ecol; 2007 Dec; 62(3):280-9. PubMed ID: 17916077 [TBL] [Abstract][Full Text] [Related]
46. Phylogenetic characterization of ineffective Frankia in Alnus glutinosa (L.) Gaertn. nodules from wetland soil inoculants. Wolters DJ; Van Dijk C; Zoetendal EG; Akkermans AD Mol Ecol; 1997 Oct; 6(10):971-81. PubMed ID: 9348704 [TBL] [Abstract][Full Text] [Related]
47. Regulation of nodulation in the absence of N2 is different in actinorhizal plants with different infection pathways. Wall LG; Valverde C; Huss-Danell K J Exp Bot; 2003 Apr; 54(385):1253-8. PubMed ID: 12654876 [TBL] [Abstract][Full Text] [Related]
48. Ectomycorrhizal root development in wet Alder carr forests in response to desiccation and eutrophication. Baar J; Bastiaans T; van de Coevering MA; Roelofs JG Mycorrhiza; 2002 Jun; 12(3):147-51. PubMed ID: 12072985 [TBL] [Abstract][Full Text] [Related]
49. Transfer of labelled nitrogen from glutamic acid to pine seedlings through the mycelium of Boletus variegatus (Sw.) Fr. MELIN E; NILSSON H Nature; 1953 Jan; 171(4342):134. PubMed ID: 13025514 [No Abstract] [Full Text] [Related]
50. Correlations between the ages of Alnus host species and the genetic diversity of associated endosymbiotic Frankia strains from nodules. Dai Y; Zhang C; Xiong Z; Zhang Z Sci China C Life Sci; 2005 May; 48 Suppl 1():76-81. PubMed ID: 16089332 [TBL] [Abstract][Full Text] [Related]
51. Regulation of organic and inorganic nitrogen uptake in Scots pine (Pinus sylvestris) seedlings. Ohlund J; Näsholm T Tree Physiol; 2004 Dec; 24(12):1397-402. PubMed ID: 15465702 [TBL] [Abstract][Full Text] [Related]
52. Role of urban ectomycorrhizal fungi in improving the tolerance of lodgepole pine (Pinus contorta) seedlings to salt stress. Zwiazek JJ; Equiza MA; Karst J; Senorans J; Wartenbe M; Calvo-Polanco M Mycorrhiza; 2019 Jul; 29(4):303-312. PubMed ID: 30982089 [TBL] [Abstract][Full Text] [Related]
53. Are arbuscular-mycorrhizal Alnus incana seedlings more resistant to drought than ectomycorrhizal and nonmycorrhizal ones? Kilpeläinen J; Aphalo PJ; Barbero-López A; Adamczyk B; Nipu SA; Lehto T Tree Physiol; 2020 May; 40(6):782-795. PubMed ID: 32186729 [TBL] [Abstract][Full Text] [Related]
54. Free amino acids and protein in Scots pine seedlings cultivated at different nutrient availabilities. Gezelius K; Näsholm T Tree Physiol; 1993 Jul; 13(1):71-86. PubMed ID: 14969902 [TBL] [Abstract][Full Text] [Related]
55. Influence of host (Alnus and Myrica) genotype on infectivity, N Huss-Danell K New Phytol; 1991 Sep; 119(1):121-127. PubMed ID: 33874328 [TBL] [Abstract][Full Text] [Related]
56. Effects of O Greitner CS; Winner WE New Phytol; 1989 Apr; 111(4):647-656. PubMed ID: 33874056 [TBL] [Abstract][Full Text] [Related]
57. Growth and nutrient uptake of ectomycorrhizal Pinus sylvestris seedlings in a natural substrate treated with elevated Al concentrations. Ahonen-Jonnarth U; Göransson A; Finlay RD Tree Physiol; 2003 Feb; 23(3):157-67. PubMed ID: 12566266 [TBL] [Abstract][Full Text] [Related]
58. The co-occurrence of ectomycorrhizal, arbuscular mycorrhizal, and dark septate fungi in seedlings of four members of the Pinaceae. Wagg C; Pautler M; Massicotte HB; Peterson RL Mycorrhiza; 2008 Feb; 18(2):103-10. PubMed ID: 18157555 [TBL] [Abstract][Full Text] [Related]
59. Ectomycorrhizal fungi affect the physiological responses of Picea glauca and Pinus banksiana seedlings exposed to an NaCl gradient. Bois G; Bigras FJ; Bertrand A; Piché Y; Fung MY; Khasa DP Tree Physiol; 2006 Sep; 26(9):1185-96. PubMed ID: 16740494 [TBL] [Abstract][Full Text] [Related]
60. Nutrient uptake by intact mycorrhizal Pinus sylvestris seedlings: a diagnostic tool to detect copper toxicity. Van Tichelen KK; Vanstraelen T; Colpaert JV Tree Physiol; 1999 Mar; 19(3):189-196. PubMed ID: 12651582 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]