These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
316 related articles for article (PubMed ID: 33874357)
21. Arbuscular mycorrhizal fungi improve uptake and control efficacy of carbosulfan on Spodoptera frugiperda in maize plants. Yan W; Lin X; Yao Q; Zhao C; Zhang Z; Xu H Pest Manag Sci; 2021 Jun; 77(6):2812-2819. PubMed ID: 33538074 [TBL] [Abstract][Full Text] [Related]
22. Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material. Leigh J; Hodge A; Fitter AH New Phytol; 2009; 181(1):199-207. PubMed ID: 18811615 [TBL] [Abstract][Full Text] [Related]
23. [Effects of Arbuscular Mycorrhizal Fungi on the Growth and Uptake of La and Pb by Maize Grown in La and Pb-Contaminated Soil]. Chang Q; Guo W; Pan L; Wang QF; Zhou XN; Yang L; Li E Huan Jing Ke Xue; 2017 Sep; 38(9):3915-3926. PubMed ID: 29965275 [TBL] [Abstract][Full Text] [Related]
24. Utilization of organic nitrogen by arbuscular mycorrhizal fungi-is there a specific role for protists and ammonia oxidizers? Bukovská P; Bonkowski M; Konvalinková T; Beskid O; Hujslová M; Püschel D; Řezáčová V; Gutiérrez-Núñez MS; Gryndler M; Jansa J Mycorrhiza; 2018 Apr; 28(3):269-283. PubMed ID: 29455336 [TBL] [Abstract][Full Text] [Related]
25. Arsenic uptake by arbuscular mycorrhizal maize (Zea mays L.) grown in an arsenic-contaminated soil with added phosphorus. Xia YS; Chen BD; Christie P; Smith FA; Wang YS; Li XL J Environ Sci (China); 2007; 19(10):1245-51. PubMed ID: 18062425 [TBL] [Abstract][Full Text] [Related]
26. Growth model for arbuscular mycorrhizal fungi. Schnepf A; Roose T; Schweiger P J R Soc Interface; 2008 Jul; 5(24):773-84. PubMed ID: 18077246 [TBL] [Abstract][Full Text] [Related]
27. Phosphorus acquisition efficiency in arbuscular mycorrhizal maize is correlated with the abundance of root-external hyphae and the accumulation of transcripts encoding PHT1 phosphate transporters. Sawers RJ; Svane SF; Quan C; Grønlund M; Wozniak B; Gebreselassie MN; González-Muñoz E; Chávez Montes RA; Baxter I; Goudet J; Jakobsen I; Paszkowski U New Phytol; 2017 Apr; 214(2):632-643. PubMed ID: 28098948 [TBL] [Abstract][Full Text] [Related]
28. Organic Nitrogen-Driven Stimulation of Arbuscular Mycorrhizal Fungal Hyphae Correlates with Abundance of Ammonia Oxidizers. Bukovská P; Gryndler M; Gryndlerová H; Püschel D; Jansa J Front Microbiol; 2016; 7():711. PubMed ID: 27242732 [TBL] [Abstract][Full Text] [Related]
29. [Phosphorus transfer between mixed poplar and black locust seedlings]. He W; Jia L; Hao B; Wen X; Zhai M Ying Yong Sheng Tai Xue Bao; 2003 Apr; 14(4):481-6. PubMed ID: 12920885 [TBL] [Abstract][Full Text] [Related]
30. Transmembrane electric potential difference of germ tubes of arbuscular mycorrhizal fungi responds to external stimuli. Ayling SM; Smith SE; Smith FA New Phytol; 2000 Sep; 147(3):631-639. PubMed ID: 33862934 [TBL] [Abstract][Full Text] [Related]
31. Effects of a mycophagous Collembola on the symbioses between Trifolium subterraneum and three arbuscular mycorrhizal fungi. Larsen J; Jakobsen I New Phytol; 1996 Jun; 133(2):295-302. PubMed ID: 29681070 [TBL] [Abstract][Full Text] [Related]
32. A modified glass bead compartment cultivation system for studies on nutrient and trace metal uptake by arbuscular mycorrhiza. Chen B; Christie P; Li X Chemosphere; 2001 Jan; 42(2):185-92. PubMed ID: 11237297 [TBL] [Abstract][Full Text] [Related]
33. Different levels of hyphal self-incompatibility modulate interconnectedness of mycorrhizal networks in three arbuscular mycorrhizal fungi within the Glomeraceae. Pepe A; Giovannetti M; Sbrana C Mycorrhiza; 2016 May; 26(4):325-32. PubMed ID: 26630971 [TBL] [Abstract][Full Text] [Related]
34. Extraradical mycelium of the arbuscular mycorrhizal fungus Glomus lamellosum can take up, accumulate and translocate radiocaesium under root-organ culture conditions. Declerck S; Dupré de Boulois H; Bivort C; Delvaux B Environ Microbiol; 2003 Jun; 5(6):510-6. PubMed ID: 12755718 [TBL] [Abstract][Full Text] [Related]
35. Uranium uptake and translocation by the arbuscular mycorrhizal fungus, Glomus intraradices, under root-organ culture conditions. Rufyikiri G; Thiry Y; Wang L; Delvaux B; Declerck S New Phytol; 2002 Nov; 156(2):275-281. PubMed ID: 33873284 [TBL] [Abstract][Full Text] [Related]
36. Competition and substrate colonization strategies of three polyxenically grown arbuscular mycorrhizal fungi. Cano C; Bago A Mycologia; 2005; 97(6):1201-14. PubMed ID: 16722214 [TBL] [Abstract][Full Text] [Related]
37. Utilization of organic nitrogen by arbuscular mycorrhizal fungi-is there a specific role for protists and ammonia oxidizers? Bukovská P; Bonkowski M; Konvalinková T; Beskid O; Hujslová M; Püschel D; Řezáčová V; Gutiérrez-Núñez MS; Gryndler M; Jansa J Mycorrhiza; 2018 Aug; 28(5-6):465. PubMed ID: 29951863 [TBL] [Abstract][Full Text] [Related]
39. Expressed genes in the extraradical hyphae of an arbuscular mycorrhizal fungus, Glomus intraradices, in the symbiotic phase. Sawaki H; Saito M FEMS Microbiol Lett; 2001 Feb; 195(1):109-13. PubMed ID: 11167004 [TBL] [Abstract][Full Text] [Related]
40. Uptake and Intraradical Immobilization of Cadmium by Arbuscular Mycorrhizal Fungi as Revealed by a Stable Isotope Tracer and Synchrotron Radiation μX-Ray Fluorescence Analysis. Chen B; Nayuki K; Kuga Y; Zhang X; Wu S; Ohtomo R Microbes Environ; 2018 Sep; 33(3):257-263. PubMed ID: 30122692 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]