These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 33874380)

  • 1. Sinuous ordinary epidermal cells: behind several patterns of waviness, a common morphogenetic mechanism.
    Panteris E; Apostolakos P; Galatis B
    New Phytol; 1994 Aug; 127(4):771-780. PubMed ID: 33874380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Double Puzzle: Morphogenesis of the Bi-Layered Leaf Adaxial Epidermis of
    Panteris E; Adamakis IS
    Plants (Basel); 2022 Dec; 11(24):. PubMed ID: 36559549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microtubule organization and cell morphogenesis in two semi-lobed cell types of Adiantum capillus-veneris L. leaflets.
    Panteris E; Apostolakos P; Galatis B
    New Phytol; 1993 Nov; 125(3):509-520. PubMed ID: 33874586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microtubule and actin filament organization during stomatal morphogenesis in the fern Asplenium nidus. II. Guard cells.
    Apostolakos P; Galatis B
    New Phytol; 1999 Feb; 141(2):209-223. PubMed ID: 33862927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microtubule involvement in the deposition of radial fibrillar callose arrays in stomata of the fern Asplenium nidus L.
    Apostolakos P; Livanos P; Galatis B
    Cell Motil Cytoskeleton; 2009 Jun; 66(6):342-9. PubMed ID: 19363785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell wall matrix polysaccharide distribution and cortical microtubule organization: two factors controlling mesophyll cell morphogenesis in land plants.
    Sotiriou P; Giannoutsou E; Panteris E; Apostolakos P; Galatis B
    Ann Bot; 2016 Mar; 117(3):401-19. PubMed ID: 26802013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Local differentiation of cell wall matrix polysaccharides in sinuous pavement cells: its possible involvement in the flexibility of cell shape.
    Sotiriou P; Giannoutsou E; Panteris E; Galatis B; Apostolakos P
    Plant Biol (Stuttg); 2018 Mar; 20(2):223-237. PubMed ID: 29247575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roles of microtubules and cellulose microfibril assembly in the localization of secondary-cell-wall deposition in developing tracheary elements.
    Roberts AW; Frost AO; Roberts EM; Haigler CH
    Protoplasma; 2004 Dec; 224(3-4):217-29. PubMed ID: 15614483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reassessing the Roles of PIN Proteins and Anticlinal Microtubules during Pavement Cell Morphogenesis.
    Belteton SA; Sawchuk MG; Donohoe BS; Scarpella E; Szymanski DB
    Plant Physiol; 2018 Jan; 176(1):432-449. PubMed ID: 29192026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phototropins and neochrome1 mediate nuclear movement in the fern Adiantum capillus-veneris.
    Tsuboi H; Suetsugu N; Kawai-Toyooka H; Wada M
    Plant Cell Physiol; 2007 Jun; 48(6):892-6. PubMed ID: 17507389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial organization of cellulose microfibrils and matrix polysaccharides in primary plant cell walls as imaged by multichannel atomic force microscopy.
    Zhang T; Zheng Y; Cosgrove DJ
    Plant J; 2016 Jan; 85(2):179-92. PubMed ID: 26676644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical Stress Initiates and Sustains the Morphogenesis of Wavy Leaf Epidermal Cells.
    Bidhendi AJ; Altartouri B; Gosselin FP; Geitmann A
    Cell Rep; 2019 Jul; 28(5):1237-1250.e6. PubMed ID: 31365867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential growth of pavement cells of Arabidopsis thaliana leaf epidermis as revealed by microbead labeling.
    Elsner J; Lipowczan M; Kwiatkowska D
    Am J Bot; 2018 Feb; 105(2):257-265. PubMed ID: 29578288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cortical microtubules optimize cell-wall crystallinity to drive unidirectional growth in Arabidopsis.
    Fujita M; Himmelspach R; Hocart CH; Williamson RE; Mansfield SD; Wasteneys GO
    Plant J; 2011 Jun; 66(6):915-28. PubMed ID: 21535258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The morphogenesis of lobed plant cells in the mesophyll and epidermis: organization and distinct roles of cortical microtubules and actin filaments.
    Panteris E; Galatis B
    New Phytol; 2005 Sep; 167(3):721-32. PubMed ID: 16101909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterogeneity of silica and glycan-epitope distribution in epidermal idioblast cell walls in Adiantum raddianum laminae.
    Leroux O; Leroux F; Mastroberti AA; Santos-Silva F; Van Loo D; Bagniewska-Zadworna A; Van Hoorebeke L; Bals S; Popper ZA; de Araujo Mariath JE
    Planta; 2013 Jun; 237(6):1453-64. PubMed ID: 23430352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alteration of oriented deposition of cellulose microfibrils by mutation of a katanin-like microtubule-severing protein.
    Burk DH; Ye ZH
    Plant Cell; 2002 Sep; 14(9):2145-60. PubMed ID: 12215512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cortical Microtubule Organization during Petal Morphogenesis in
    Yang Y; Huang W; Wu E; Lin C; Chen B; Lin D
    Int J Mol Sci; 2019 Oct; 20(19):. PubMed ID: 31623377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoscale movements of cellulose microfibrils in primary cell walls.
    Zhang T; Vavylonis D; Durachko DM; Cosgrove DJ
    Nat Plants; 2017 Apr; 3():17056. PubMed ID: 28452988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microtubule and cellulose microfibril orientation during plant cell and organ growth.
    Chan J
    J Microsc; 2012 Jul; 247(1):23-32. PubMed ID: 22171640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.