These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 33874408)
1. Transfer of phosphate from fungus to plant in VA mycorrhizas: calculation of the area of symbiotic interface and of fluxes of P from two different fungi to A Allium porrum L. Smith SE; Dickson S; Morris C; Smith FA New Phytol; 1994 May; 127(1):93-99. PubMed ID: 33874408 [TBL] [Abstract][Full Text] [Related]
2. The effect of fungicides on vesicular-arbuscular mycorrhizal symbiosis: I. The effects on vesicular-arbuscular mycorrhizal fungi and plant growth. Sukarno N; Smith SE; Scott ES New Phytol; 1993 Sep; 125(1):139-147. PubMed ID: 33874619 [TBL] [Abstract][Full Text] [Related]
3. Arbuscules of vesicular-arbuscular mycorrhizal fungi inhabit an acidic compartment within plant roots. Guttenberger M Planta; 2000 Aug; 211(3):299-304. PubMed ID: 10987547 [TBL] [Abstract][Full Text] [Related]
4. Early processes involved in host recognition by arbuscular mycorrhizal fungi. Giovannetti M; Sbrana C; Logi C New Phytol; 1994 Aug; 127(4):703-709. PubMed ID: 33874390 [TBL] [Abstract][Full Text] [Related]
5. The development of endomycorrhizal root systems: VII. A detailed study of effects of soil phosphorus on colonization. Amijee F; Tinker PB; Stribley DP New Phytol; 1989 Mar; 111(3):435-446. PubMed ID: 33874001 [TBL] [Abstract][Full Text] [Related]
6. The effect of fungicides on vesicular-arbuscular mycorrhizal symbiosis: II. The effects on area of interface and efficiency of P uptake and transfer to plant. Sukarno N; Smith FA; Smith SE; Scott ES New Phytol; 1996 Apr; 132(4):583-592. PubMed ID: 33863139 [TBL] [Abstract][Full Text] [Related]
7. The susceptibility of roots to infection by an arbuscular mycorrhizal fungus in relation to age and phosphorus supply. Amijee BF; Stribley DP; Lane PW New Phytol; 1993 Nov; 125(3):581-586. PubMed ID: 33874593 [TBL] [Abstract][Full Text] [Related]
8. Selective interactions between different species of mycorrhizal fungi and Rhizobium meliloti strains, and their effects on growth, N Azcón R; Rubio R; Barea JM New Phytol; 1991 Mar; 117(3):399-404. PubMed ID: 33874316 [TBL] [Abstract][Full Text] [Related]
9. Localization of β (1-3) glucan in walls of the endomycorrhizal fungi Glomus mosseae (Nicol. & Gerd.) Gerd. & Trappe and Acaulospora laevis Gerd. & Trappe during colonization of host roots. Lemoine MC; Gollotte A; Gianinazzi-Pearson V New Phytol; 1995 Jan; 129(1):97-105. PubMed ID: 33874412 [TBL] [Abstract][Full Text] [Related]
10. The detection of Glomus spp. (arbuscular mycorrhizal fungi) forming mycorrhizas in three plants, at different stages of seedling development, using mycorrhiza-specific isozymes. Tisserant B; Brenac V; Requena N; Jeffries P; Dodd JC New Phytol; 1998 Feb; 138(2):225-239. PubMed ID: 33863087 [TBL] [Abstract][Full Text] [Related]
11. Cross walls in arbuscular trunk hyphae form after loss of metabolic activity. Dickson S; Smith SE New Phytol; 2001 Sep; 151(3):735-742. PubMed ID: 33853256 [TBL] [Abstract][Full Text] [Related]
12. Growth model for arbuscular mycorrhizal fungi. Schnepf A; Roose T; Schweiger P J R Soc Interface; 2008 Jul; 5(24):773-84. PubMed ID: 18077246 [TBL] [Abstract][Full Text] [Related]
13. Possible involvement of hyphal phosphatase in phosphate efflux from intraradical hyphae isolated from mycorrhizal roots colonized by Gigaspora margarita. Kojima T; Saito M Mycol Res; 2004 Jun; 108(Pt 6):610-5. PubMed ID: 15323242 [TBL] [Abstract][Full Text] [Related]
14. Comparative study of mycorrhizal susceptibility and anatomy of four palm species. Dreyer B; Morte A; López JA; Honrubia M Mycorrhiza; 2010 Feb; 20(2):103-15. PubMed ID: 19662440 [TBL] [Abstract][Full Text] [Related]
15. IMPROVED HYPHAL GROWTH OF TWO SPECIES OF VESICULAR-ARBUSCULAR MYCORRHIZAL FUNGI IN THE PRESENCE OF SUSPENSION-CULTURED PLANT CELLS. Carr GR; Hinkley MA; LE Tacon F; Hepper CM; Jones MGK; Thomas E New Phytol; 1985 Nov; 101(3):417-426. PubMed ID: 33874240 [TBL] [Abstract][Full Text] [Related]
16. Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Feng G; Zhang FS; Li XL; Tian CY; Tang C; Rengel Z Mycorrhiza; 2002 Aug; 12(4):185-90. PubMed ID: 12189473 [TBL] [Abstract][Full Text] [Related]
17. Acquisition of nitrogen by external hyphae of arbuscular mycorrhizal fungi associated with Zea mays L. Frey B; Schüepp H New Phytol; 1993 Jun; 124(2):221-230. PubMed ID: 33874357 [TBL] [Abstract][Full Text] [Related]
18. Mycorrhizal growth responses: interactions between photon irradiance and phosphorus nutrition. Son CL; Smith SE New Phytol; 1988 Mar; 108(3):305-314. PubMed ID: 33873939 [TBL] [Abstract][Full Text] [Related]
19. Isolation of the 3-phosphoglycerate kinase gene of the arbuscular mycorrhizal fungus Glomus mosseae (Nicol. & Gerd.) Gerdemann & Trappe. Harrier LA; Wright F; Hooker JE Curr Genet; 1998 Dec; 34(5):386-92. PubMed ID: 9871121 [TBL] [Abstract][Full Text] [Related]
20. Appressoria and phosphorus fluxes in mycorrhizal plants: connections between soil- and plant-based hyphae. Pepe A; Giovannetti M; Sbrana C Mycorrhiza; 2020 Sep; 30(5):589-600. PubMed ID: 32533256 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]