These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 33874415)
1. Interactions between drought and elevated CO Tschaplinski TJ; Stewart DB; Hanson PJ; Norby RJ New Phytol; 1995 Jan; 129(1):63-71. PubMed ID: 33874415 [TBL] [Abstract][Full Text] [Related]
2. Effects of CO Tolley LC; Strain BR Oecologia; 1985 Jan; 65(2):166-172. PubMed ID: 28310662 [TBL] [Abstract][Full Text] [Related]
3. Light environment alters response to ozone stress in seedlings of Acer saccharum Marsh, and hybrid Populus L.: I. In situ net photosynthesis, dark respiration and growth. Tjoelker MG; Volin JC; Oleksyn J; Reich PB New Phytol; 1993 Aug; 124(4):627-636. PubMed ID: 33874428 [TBL] [Abstract][Full Text] [Related]
4. Responses of deciduous broadleaf trees to defoliation in a CO2 enriched atmosphere. Volin JC; Kruger EL; Lindroth RL Tree Physiol; 2002 May; 22(7):435-48. PubMed ID: 11986047 [TBL] [Abstract][Full Text] [Related]
5. Radiation-use efficiency and gas exchange responses to water and nutrient availability in irrigated and fertilized stands of sweetgum and sycamore. Allen CB; Will RE; McGarvey RC; Coyle DR; Coleman MD Tree Physiol; 2005 Feb; 25(2):191-200. PubMed ID: 15574400 [TBL] [Abstract][Full Text] [Related]
6. Gas exchange, biomass, whole-plant water-use efficiency and water uptake of peach (Prunus persica) seedlings in response to elevated carbon dioxide concentration and water availability. Centritto M; Lucas ME; Jarvis PG Tree Physiol; 2002 Jul; 22(10):699-706. PubMed ID: 12091151 [TBL] [Abstract][Full Text] [Related]
7. Water relations and gas exchange of Acer saccharum seedlings in contrasting natural light and water regimes. Ellsworth DS; Reich PB Tree Physiol; 1992 Jan; 10(1):1-20. PubMed ID: 14969871 [TBL] [Abstract][Full Text] [Related]
8. Effects of CO Reid CD; Strain BR Oecologia; 1994 Jun; 98(1):31-39. PubMed ID: 28312793 [TBL] [Abstract][Full Text] [Related]
9. Fine root chemistry and decomposition in model communities of north-temperate tree species show little response to elevated atmospheric CO2 and varying soil resource availability. King JS; Pregitzer KS; Zak DR; Holmes WE; Schmidt K Oecologia; 2005 Dec; 146(2):318-28. PubMed ID: 16041614 [TBL] [Abstract][Full Text] [Related]
10. Ontogeny affects response of northern red oak seedlings to elevated CO Anderson PD; Tomlinson PT New Phytol; 1998 Nov; 140(3):477-491. PubMed ID: 33862872 [TBL] [Abstract][Full Text] [Related]
11. Leaf respiration at different canopy positions in sweetgum (Liquidambar styraciflua) grown in ambient and elevated concentrations of carbon dioxide in the field. Tissue DT; Lewis JD; Wullschleger SD; Amthor JS; Griffin KL; Anderson OR Tree Physiol; 2002 Nov; 22(15-16):1157-66. PubMed ID: 12414375 [TBL] [Abstract][Full Text] [Related]
12. Elevated [CO2] mitigates the effect of surface drought by stimulating root growth to access sub-soil water. Uddin S; Löw M; Parvin S; Fitzgerald GJ; Tausz-Posch S; Armstrong R; O'Leary G; Tausz M PLoS One; 2018; 13(6):e0198928. PubMed ID: 29902235 [TBL] [Abstract][Full Text] [Related]
13. Effects of elevated [CO2] and low soil moisture on the physiological responses of Mountain Maple (Acer spicatum L.) seedlings to light. Danyagri G; Dang QL PLoS One; 2013; 8(10):e76586. PubMed ID: 24146894 [TBL] [Abstract][Full Text] [Related]
14. Elevated CO Miao SL; Wayne PM; Bazzaz FA Oecologia; 1992 May; 90(2):300-304. PubMed ID: 28313729 [TBL] [Abstract][Full Text] [Related]
15. Leaf ecophysiological and metabolic response in Quercus pyrenaica Willd seedlings to moderate drought under enriched CO Aranda I; Cadahía E; Fernández de Simón B J Plant Physiol; 2020 Jan; 244():153083. PubMed ID: 31812028 [TBL] [Abstract][Full Text] [Related]
16. Industrial-age changes in atmospheric [CO2] and temperature differentially alter responses of faster- and slower-growing Eucalyptus seedlings to short-term drought. Lewis JD; Smith RA; Ghannoum O; Logan BA; Phillips NG; Tissue DT Tree Physiol; 2013 May; 33(5):475-88. PubMed ID: 23677118 [TBL] [Abstract][Full Text] [Related]
17. Responses of sugar maple and hemlock seedlings to elevated carbon dioxide under altered above- and belowground nitrogen sources. Eller AS; McGuire KL; Sparks JP Tree Physiol; 2011 Apr; 31(4):391-401. PubMed ID: 21470979 [TBL] [Abstract][Full Text] [Related]
18. Distinct redox state regulation in the seedling performance of Norway maple and sycamore. Alipour S; Wojciechowska N; Bujarska-Borkowska B; Kalemba EM J Plant Res; 2023 Jan; 136(1):83-96. PubMed ID: 36385674 [TBL] [Abstract][Full Text] [Related]
19. Light environment alters response to ozone stress in seedlings of Acer saccharum Marsh, and hybrid Populus L.: II. Diagnostic gas exchange and leaf chemistry. Volin JC; Tjoelker MG; Oleksyn J; Reich PB New Phytol; 1993 Aug; 124(4):637-646. PubMed ID: 33874429 [TBL] [Abstract][Full Text] [Related]
20. Effect of landfill leachate irrigation on red maple (Acer rubrum L.) and sugar maple (Acer saccharum Marsh.) seedling growth and on foliar nutrient concentrations. Gordon AM; McBride RA; Fisken AJ; Bates TE Environ Pollut; 1989; 56(4):327-36. PubMed ID: 15092473 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]