BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 33874428)

  • 1. Light environment alters response to ozone stress in seedlings of Acer saccharum Marsh, and hybrid Populus L.: I. In situ net photosynthesis, dark respiration and growth.
    Tjoelker MG; Volin JC; Oleksyn J; Reich PB
    New Phytol; 1993 Aug; 124(4):627-636. PubMed ID: 33874428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light environment alters response to ozone stress in seedlings of Acer saccharum Marsh, and hybrid Populus L.: II. Diagnostic gas exchange and leaf chemistry.
    Volin JC; Tjoelker MG; Oleksyn J; Reich PB
    New Phytol; 1993 Aug; 124(4):637-646. PubMed ID: 33874429
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light environment alters response to ozone stress in seedlings of Acer saccharum Marsh, and hybrid Populus L.: III. Consequences for performance of gypsy moth.
    Lindroth RL; Reich PB; Tjoelker MG; Volin JC; Oleksyn J
    New Phytol; 1993 Aug; 124(4):647-651. PubMed ID: 33874430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Responses of hybrid poplar clones and red maple seedlings to ambient O(3) under differing light within a mixed hardwood forest.
    Wei C; Skelly JM; Pennypacker SP; Ferdinand JA; Savage JE; Stevenson RE; Davis DD
    Environ Pollut; 2004 Jul; 130(2):199-214. PubMed ID: 15158034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of CO
    Reid CD; Strain BR
    Oecologia; 1994 Jun; 98(1):31-39. PubMed ID: 28312793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Soil nitrogen and chronic ozone stress influence physiology, growth and nutrient status of Pinus taeda L. and Liriodendron tulipifera L. seedlings.
    Tjoelker MG; Luxmoore RJ
    New Phytol; 1991 Sep; 119(1):69-81. PubMed ID: 33874340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photosynthetic acclimation of overstory Populus tremuloides and understory Acer saccharum to elevated atmospheric CO2 concentration: interactions with shade and soil nitrogen.
    Kubiske ME; Zak DR; Pregitzer KS; Takeuchi Y
    Tree Physiol; 2002 Apr; 22(5):321-9. PubMed ID: 11960756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions between drought and elevated CO
    Tschaplinski TJ; Stewart DB; Hanson PJ; Norby RJ
    New Phytol; 1995 Jan; 129(1):63-71. PubMed ID: 33874415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Becoming less tolerant with age: sugar maple, shade, and ontogeny.
    Sendall KM; Lusk CH; Reich PB
    Oecologia; 2015 Dec; 179(4):1011-21. PubMed ID: 26318296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of light availability on leaf gas exchange and expansion in lychee (Litchi chinensis).
    Hieke S; Menzel CM; Lüdders P
    Tree Physiol; 2002 Dec; 22(17):1249-56. PubMed ID: 12464578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo and in situ rhizosphere respiration in Acer saccharum and Betula alleghaniensis seedlings grown in contrasting light regimes.
    Delagrange S; Huc F; Messier C; Dizengremel P; Dreyer E
    Tree Physiol; 2006 Jul; 26(7):925-34. PubMed ID: 16585038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of elevated CO(2) and light availability on the photosynthetic light response of trees of contrasting shade tolerance.
    Kubiske ME; Pregitzer KS
    Tree Physiol; 1996 Mar; 16(3):351-8. PubMed ID: 14871736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulated root dynamics of a 160-year-old sugar maple (Acer saccharum Marsh.) tree with and without ozone exposure using the TREGRO model.
    Retzlaff WA; Weinstein DA; Laurence JA; Gollands B
    Tree Physiol; 1996; 16(11_12):915-921. PubMed ID: 14871784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exposure to strong irradiance exacerbates photoinhibition and suppresses N resorption during leaf senescence in shade-grown seedlings of fullmoon maple (
    Kitao M; Yazaki K; Tobita H; Agathokleous E; Kishimoto J; Takabayashi A; Tanaka R
    Front Plant Sci; 2022; 13():1006413. PubMed ID: 36388579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photosynthetic responses to understory shade and elevated carbon dioxide concentration in four northern hardwood tree species.
    Sefcik LT; Zak DR; Ellsworth DS
    Tree Physiol; 2006 Dec; 26(12):1589-99. PubMed ID: 17169898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth of Eucalyptus marginata (Jarrah) seedlings in a greenhouse in response to shade and soil temperature.
    Stoneman GL; Dell B
    Tree Physiol; 1993 Oct; 13(3):239-52. PubMed ID: 14969882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Salinity tolerance of 'Valencia' orange trees on rootstocks with contrasting salt tolerance is not improved by moderate shade.
    García-Sánchez F; Syvertsen JP; Martínez V; Melgar JC
    J Exp Bot; 2006; 57(14):3697-706. PubMed ID: 16980596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contributions of leaf photosynthetic capacity, leaf angle and self-shading to the maximization of net photosynthesis in Acer saccharum: a modelling assessment.
    Posada JM; Sievänen R; Messier C; Perttunen J; Nikinmaa E; Lechowicz MJ
    Ann Bot; 2012 Aug; 110(3):731-41. PubMed ID: 22665700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acclimation of shade-developed leaves on saplings exposed to late-season canopy gaps.
    Naidu SL; DeLucia EH
    Tree Physiol; 1997 Jun; 17(6):367-76. PubMed ID: 14759845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of overstory density on ecophysiology of red oak (Quercus rubra) and sugar maple (Acer saccharum) seedlings in central Ontario shelterwoods.
    Parker WC; Dey DC
    Tree Physiol; 2008 May; 28(5):797-804. PubMed ID: 18316311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.