These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 33874444)
1. Growth and photosynthetic acclimation by Ranunculus aquatilis L. in response to inorganic carbon availability. Madsen TV New Phytol; 1993 Dec; 125(4):707-715. PubMed ID: 33874444 [TBL] [Abstract][Full Text] [Related]
2. Effect of dissolved inorganic carbon on oxygen evolution and uptake by Chlamydomonas reinhardtii suspensions adapted to ambient and CO2-enriched air. Sültemeyer DF; Klug K; Fock HP Photosynth Res; 1987 Jan; 12(1):25-33. PubMed ID: 24435578 [TBL] [Abstract][Full Text] [Related]
3. Growth, photosynthesis and acclimation by two submerged macrophytes in relation to temperature. Madsen TV; Brix H Oecologia; 1997 Apr; 110(3):320-327. PubMed ID: 28307220 [TBL] [Abstract][Full Text] [Related]
4. Interaction of UV radiation and inorganic carbon supply in the inhibition of photosynthesis: spectral and temporal responses of two marine picoplankters. Sobrino C; Neale PJ; Lubián LM Photochem Photobiol; 2005; 81(2):384-93. PubMed ID: 15538899 [TBL] [Abstract][Full Text] [Related]
5. Photosynthesis and apparent affinity for dissolved inorganic carbon by cells and chloroplasts of Chlamydomonas reinhardtii grown at high and low CO2 concentrations. Sültemeyer DF; Klöck G; Kreuzberg K; Fock HP Planta; 1988 Nov; 176(2):256-60. PubMed ID: 24220781 [TBL] [Abstract][Full Text] [Related]
6. Photosynthetic use of inorganic carbon in deep-water kelps from the Strait of Gibraltar. García-Sánchez MJ; Delgado-Huertas A; Fernández JA; Flores-Moya A Photosynth Res; 2016 Mar; 127(3):295-305. PubMed ID: 26275764 [TBL] [Abstract][Full Text] [Related]
7. The Relationship between Ribulose Bisphosphate Concentration, Dissolved Inorganic Carbon (DIC) Transport and DIC-Limited Photosynthesis in the Cyanobacterium Synechococcus leopoliensis Grown at Different Concentrations of Inorganic Carbon. Mayo WP; Elrifi IR; Turpin DH Plant Physiol; 1989 Jun; 90(2):720-7. PubMed ID: 16666834 [TBL] [Abstract][Full Text] [Related]
8. Acclimation of wild-type cells and CO2-insensitive mutants of the green alga Chlorella ellipsoidea to elevated [CO2]. Ochiai T; Colman B; Matsuda Y Plant Cell Environ; 2007 Aug; 30(8):944-51. PubMed ID: 17617822 [TBL] [Abstract][Full Text] [Related]
9. Contemporary reliance on bicarbonate acquisition predicts increased growth of seagrass Amphibolis antarctica in a high-CO2 world. Burnell OW; Connell SD; Irving AD; Watling JR; Russell BD Conserv Physiol; 2014; 2(1):cou052. PubMed ID: 27293673 [TBL] [Abstract][Full Text] [Related]
10. Photosynthetic utilisation of inorganic carbon and its regulation in the marine diatom Skeletonema costatum. Chen X; Gao K Funct Plant Biol; 2004 Nov; 31(10):1027-1033. PubMed ID: 32688971 [TBL] [Abstract][Full Text] [Related]
11. Dissolved inorganic carbon utilization and the development of extracellular carbonic anhydrase by the marine diatom Phaeodactylum tricornutum. Iglesias-Rodriguez MD; Merrett MJ New Phytol; 1997 Jan; 135(1):163-168. PubMed ID: 33863155 [TBL] [Abstract][Full Text] [Related]
12. The interplay of nutrients, dissolved inorganic carbon and algae in determining macrophyte occurrences in rivers. Kaijser W; Lorenz AW; Birk S; Hering D Sci Total Environ; 2021 Aug; 781():146728. PubMed ID: 33812100 [TBL] [Abstract][Full Text] [Related]
14. Carbon acquisition characteristics of six microalgal species isolated from a subtropical reservoir: potential implications for species succession. Lines T; Beardall J J Phycol; 2018 Oct; 54(5):599-607. PubMed ID: 30055070 [TBL] [Abstract][Full Text] [Related]
15. The acquisition of inorganic carbon by four red macroalgae. Johnston AM; Maberly SC; Raven JA Oecologia; 1992 Dec; 92(3):317-326. PubMed ID: 28312597 [TBL] [Abstract][Full Text] [Related]
16. Pyrenoid-core CO2-evolving machinery is essential for diatom photosynthesis in elevated CO2. Shimakawa G; Okuyama A; Harada H; Nakagaito S; Toyoshima Y; Nagata K; Matsuda Y Plant Physiol; 2023 Nov; 193(4):2298-2305. PubMed ID: 37625790 [TBL] [Abstract][Full Text] [Related]
17. Light Levels Affect Carbon Utilisation in Tropical Seagrass under Ocean Acidification. Ow YX; Uthicke S; Collier CJ PLoS One; 2016; 11(3):e0150352. PubMed ID: 26938454 [TBL] [Abstract][Full Text] [Related]
18. Photosynthesis might be limited by light, not inorganic carbon availability, in three intertidal Gelidiales species. Mercado JM; Xavier Niell F; Candelaria Gil-Rodríguez M New Phytol; 2001 Mar; 149(3):431-439. PubMed ID: 33873336 [TBL] [Abstract][Full Text] [Related]
19. Photosynthesis in estuarine intertidal microphytobenthos is limited by inorganic carbon availability. Vieira S; Cartaxana P; Máguas C; Marques da Silva J Photosynth Res; 2016 Apr; 128(1):85-92. PubMed ID: 26546444 [TBL] [Abstract][Full Text] [Related]
20. Ecophysiology of gelatinous Nostoc colonies: unprecedented slow growth and survival in resource-poor and harsh environments. Sand-Jensen K Ann Bot; 2014 Jul; 114(1):17-33. PubMed ID: 24966352 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]