These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 33874454)

  • 1. Sites of entry of water into the symplast of maize roots.
    Varney GT; McCully ME; Canny MJ
    New Phytol; 1993 Dec; 125(4):733-741. PubMed ID: 33874454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suberin lamellae in the hypodermis of maize (Zea mays) roots; development and factors affecting the permeability of hypodermal layers.
    Clarkson DT; Robards AW; Stephens JE; Stark M
    Plant Cell Environ; 1987 Jan; 10(1):83-93. PubMed ID: 28692152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tansley Review No. 22 What becomes of the transpiration stream?
    Canny MJ
    New Phytol; 1990 Mar; 114(3):341-368. PubMed ID: 33873972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simple method for locating the start of symplastic water flow (flumes) in leaves.
    O'Dowd NA; Canny MJ
    New Phytol; 1993 Dec; 125(4):743-748. PubMed ID: 33874453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Composite Transport Model and Water and Solute Transport across Plant Roots: An Update.
    Kim YX; Ranathunge K; Lee S; Lee Y; Lee D; Sung J
    Front Plant Sci; 2018; 9():193. PubMed ID: 29503659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport of Water and Solutes across Maize Roots Modified by Puncturing the Endodermis (Further Evidence for the Composite Transport Model of the Root).
    Steudle E; Murrmann M; Peterson CA
    Plant Physiol; 1993 Oct; 103(2):335-349. PubMed ID: 12231941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The composite water and solute transport of barley (Hordeum vulgare) roots: effect of suberized barriers.
    Ranathunge K; Kim YX; Wassmann F; Kreszies T; Zeisler V; Schreiber L
    Ann Bot; 2017 Mar; 119(4):629-643. PubMed ID: 28065927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for symplastic involvement in the radial movement of calcium in onion roots.
    Cholewa E; Peterson CA
    Plant Physiol; 2004 Apr; 134(4):1793-802. PubMed ID: 15064381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aerenchyma formation in roots of maize during sulphate starvation.
    Bouranis DL; Chorianopoulou SN; Siyiannis VF; Protonotarios VE; Hawkesford MJ
    Planta; 2003 Jul; 217(3):382-91. PubMed ID: 12728316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water uptake by roots: effects of water deficit.
    Steudle E
    J Exp Bot; 2000 Sep; 51(350):1531-42. PubMed ID: 11006304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fine veins of dicotyledon leaves as sites for enrichment of solutes of the xylem sap.
    Canny MJ
    New Phytol; 1990 Jul; 115(3):511-516. PubMed ID: 33874287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RCN1/OsABCG5, an ATP-binding cassette (ABC) transporter, is required for hypodermal suberization of roots in rice (Oryza sativa).
    Shiono K; Ando M; Nishiuchi S; Takahashi H; Watanabe K; Nakamura M; Matsuo Y; Yasuno N; Yamanouchi U; Fujimoto M; Takanashi H; Ranathunge K; Franke RB; Shitan N; Nishizawa NK; Takamure I; Yano M; Tsutsumi N; Schreiber L; Yazaki K; Nakazono M; Kato K
    Plant J; 2014 Oct; 80(1):40-51. PubMed ID: 25041515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of LOTR1 in Nutrient Transport through Organization of Spatial Distribution of Root Endodermal Barriers.
    Li B; Kamiya T; Kalmbach L; Yamagami M; Yamaguchi K; Shigenobu S; Sawa S; Danku JM; Salt DE; Geldner N; Fujiwara T
    Curr Biol; 2017 Mar; 27(5):758-765. PubMed ID: 28238658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical composition of apoplastic transport barriers in relation to radial hydraulic conductivity of corn roots (Zea mays L.).
    Zimmermann HM; Hartmann K; Schreiber L; Steudle E
    Planta; 2000 Jan; 210(2):302-11. PubMed ID: 10664137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural Changes and Associated Reduction of Hydraulic Conductance in Roots of Sorghum bicolor L. following Exposure to Water Deficit.
    Cruz RT; Jordan WR; Drew MC
    Plant Physiol; 1992 May; 99(1):203-12. PubMed ID: 16668850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uptake of Lucifer Yellow CH into intact barley roots: Evidence for fluid-phase endocytosis.
    Oparka KJ; Robinson D; Prior DA; Derrick P; Wright KM
    Planta; 1988 Dec; 176(4):541-7. PubMed ID: 24220951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnesium deficiency results in increased suberization in endodermis and hypodermis of corn roots.
    Pozuelo JM; Espelie KE; Kolattukudy PE
    Plant Physiol; 1984 Feb; 74(2):256-60. PubMed ID: 16663407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water permeability and reflection coefficient of the outer part of young rice roots are differently affected by closure of water channels (aquaporins) or blockage of apoplastic pores.
    Ranathunge K; Kotula L; Steudle E; Lafitte R
    J Exp Bot; 2004 Feb; 55(396):433-47. PubMed ID: 14739266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stagnant deoxygenated growth enhances root suberization and lignifications, but differentially affects water and NaCl permeabilities in rice (Oryza sativa L.) roots.
    Ranathunge K; Lin J; Steudle E; Schreiber L
    Plant Cell Environ; 2011 Aug; 34(8):1223-40. PubMed ID: 21414017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Casparian bands occur in the periderm of Pelargonium hortorum stem and root.
    Meyer CJ; Peterson CA
    Ann Bot; 2011 Apr; 107(4):591-8. PubMed ID: 21239408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.