These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 33874464)
1. Growth analyses on in vitro, ex vitro and auxin-rooted hypocotyl cuttings of Pinus contorta Dougl. ex Loud. Grönroos R; Flygh G; Kähr M; VON Arnold S New Phytol; 1993 Dec; 125(4):829-836. PubMed ID: 33874464 [TBL] [Abstract][Full Text] [Related]
2. Early and late root formation in epicotyl cuttings of Pinus sylvestris after auxin treatment. Flygh G; Grönroos R; Gulin L; Von Arnold S Tree Physiol; 1993 Jan; 12(1):81-92. PubMed ID: 14969936 [TBL] [Abstract][Full Text] [Related]
3. Genetic variation in rooting ability of loblolly pine cuttings: effects of auxin and family on rooting by hypocotyl cuttings. Greenwood MS; Weir RJ Tree Physiol; 1995 Jan; 15(1):41-5. PubMed ID: 14966010 [TBL] [Abstract][Full Text] [Related]
4. Response to auxin changes during maturation-related loss of adventitious rooting competence in loblolly pine (Pinus taeda) stem cuttings. Greenwood MS; Cui X; Xu F Physiol Plant; 2001 Mar; 111(3):373-380. PubMed ID: 11240922 [TBL] [Abstract][Full Text] [Related]
5. Distinct effects of auxin and light on adventitious root development in Eucalyptus saligna and Eucalyptus globulus. Fett-Neto AG; Fett JP; Veira Goulart LW; Pasquali G; Termignoni RR; Ferreira AG Tree Physiol; 2001 May; 21(7):457-64. PubMed ID: 11340046 [TBL] [Abstract][Full Text] [Related]
6. Ectomycorrhizal fungi and exogenous auxins influence root and mycorrhiza formation of Scots pine hypocotyl cuttings in vitro. Niemi K; Vuorinen T; Ernstsen A; Häggman H Tree Physiol; 2002 Dec; 22(17):1231-9. PubMed ID: 12464576 [TBL] [Abstract][Full Text] [Related]
7. Influence of gibberellic acid and stock plant irradiance on carbohydrate content and rooting in cuttings of Scots pine seedlings (Pinus sylvestris L.). Ernstsen A; Hansen J Tree Physiol; 1986 Jun; 1(1):115-25. PubMed ID: 14975914 [TBL] [Abstract][Full Text] [Related]
8. Polar transport and accumulation of indole-3-acetic acid during root regeneration by Pinus lambertiana embryos. Greenwood MS; Goldsmith MH Planta; 1970 Dec; 95(4):297-313. PubMed ID: 24497144 [TBL] [Abstract][Full Text] [Related]
9. Growth and branching habit of rooted cuttings collected from epicormic shoots of Betula pendula Roth. Cameron AD; Sani H Tree Physiol; 1994 Apr; 14(4):427-36. PubMed ID: 14967697 [TBL] [Abstract][Full Text] [Related]
10. Light sources with different spectra affect root and mycorrhiza formation in Scots pine in vitro. Niemi K; Julkunen-Tiitto R; Tegelberg R; Häggman H Tree Physiol; 2005 Jan; 25(1):123-8. PubMed ID: 15519994 [TBL] [Abstract][Full Text] [Related]
11. Drought tolerance, growth partitioning and vigor in eucalypt seedlings and rooted cuttings. Blake TJ; Filho WS Tree Physiol; 1988 Dec; 4(4):325-35. PubMed ID: 14972803 [TBL] [Abstract][Full Text] [Related]
12. Influence of the Irradiance on Carbohydrate Content and Rooting of Cuttings of Pine Seedlings (Pinus sylvestris L.). Hansen J; Strömquist LH; Ericsson A Plant Physiol; 1978 Jun; 61(6):975-9. PubMed ID: 16660437 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of aeroponics for clonal propagation of Caralluma edulis, Leptadenia reticulata and Tylophora indica - three threatened medicinal Asclepiads. Mehandru P; Shekhawat NS; Rai MK; Kataria V; Gehlot HS Physiol Mol Biol Plants; 2014 Jul; 20(3):365-73. PubMed ID: 25049464 [TBL] [Abstract][Full Text] [Related]
14. Physiology and morphology of Douglas-fir rooted cuttings compared to seedlings and transplants. Ritchie GA; Tanaka Y; Duke SD Tree Physiol; 1992 Mar; 10(2):179-94. PubMed ID: 14969868 [TBL] [Abstract][Full Text] [Related]
15. Optimization of factors affecting the rooting of pine wilt disease resistant Masson pine (Pinus massoniana) stem cuttings. Pan T; Chen XL; Hao YP; Jiang CW; Wang S; Wang JS; Wei Q; Chen SJ; Yu XS; Cheng F; Xu LY PLoS One; 2021; 16(9):e0251937. PubMed ID: 34506505 [TBL] [Abstract][Full Text] [Related]
16. Dark exposure of petunia cuttings strongly improves adventitious root formation and enhances carbohydrate availability during rooting in the light. Klopotek Y; Haensch KT; Hause B; Hajirezaei MR; Druege U J Plant Physiol; 2010 May; 167(7):547-54. PubMed ID: 20047776 [TBL] [Abstract][Full Text] [Related]
17. Water movement in yellow-cedar seedlings and rooted cuttings: comparison of whole plant and root system pressurization methods. Grossnickle SC; Russell JH Tree Physiol; 1990 Mar; 6(1):57-68. PubMed ID: 14972960 [TBL] [Abstract][Full Text] [Related]
18. Reactive oxygen species regulate auxin levels to mediate adventitious root induction in Arabidopsis hypocotyl cuttings. Huang A; Wang Y; Liu Y; Wang G; She X J Integr Plant Biol; 2020 Jul; 62(7):912-926. PubMed ID: 31490027 [TBL] [Abstract][Full Text] [Related]
19. Rooting response of five pomegranate varieties to indole butyric acid concentration and cuttings age. Owais SJ Pak J Biol Sci; 2010 Jan; 13(2):51-8. PubMed ID: 20415137 [TBL] [Abstract][Full Text] [Related]
20. Mist, substrate water potential and cutting water potential influence rooting of stem cuttings of loblolly pine. Lebude AV; Goldfarb B; Blazich FA; Wise FC; Frampton J Tree Physiol; 2004 Jul; 24(7):823-31. PubMed ID: 15123454 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]