BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 33874479)

  • 1. Competition between micro-organisms and roots of barley and sorghum for iron accumulated in the root apoplasm.
    Wirén NV; Römheld V; Shioiri T; Marschner H
    New Phytol; 1995 Aug; 130(4):511-521. PubMed ID: 33874479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of the root apoplasm for iron acquisition by wheat plants.
    Zhang FS; Römheld V; Marschner H
    Plant Physiol; 1991 Dec; 97(4):1302-5. PubMed ID: 16668547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The root-hairless barley mutant brb used as model for assessment of role of root hairs in iron accumulation.
    Zuchi S; Cesco S; Gottardi S; Pinton R; Römheld V; Astolfi S
    Plant Physiol Biochem; 2011 May; 49(5):506-12. PubMed ID: 21236691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Early senescence of the oldest leaves of Fe-deficient barley plants may contribute to phytosiderophore release from the roots.
    Higuchi K; Iwase J; Tsukiori Y; Nakura D; Kobayashi N; Ohashi H; Saito A; Miwa E
    Physiol Plant; 2014 Jul; 151(3):313-22. PubMed ID: 24611482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of salt on physiological responses of barley to iron deficiency.
    Yousfi S; Wissal M; Mahmoudi H; Abdelly C; Gharsalli M
    Plant Physiol Biochem; 2007 May; 45(5):309-14. PubMed ID: 17467285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of nitrogen on root release of phytosiderophores and root uptake of Fe(III)-phytosiderophore in Fe-deficient wheat plants.
    Aciksoz SB; Ozturk L; Gokmen OO; Römheld V; Cakmak I
    Physiol Plant; 2011 Jul; 142(3):287-96. PubMed ID: 21338370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iron deficiency in barley plants: phytosiderophore release, iron translocation, and DNA methylation.
    Bocchini M; Bartucca ML; Ciancaleoni S; Mimmo T; Cesco S; Pii Y; Albertini E; Del Buono D
    Front Plant Sci; 2015; 6():514. PubMed ID: 26217365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for a specific uptake system for iron phytosiderophores in roots of grasses.
    Römheld V; Marschner H
    Plant Physiol; 1986 Jan; 80(1):175-80. PubMed ID: 16664577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Induced activity of adenine phosphoribosyltransferase (APRT) in iron-deficiency barley roots: a possible role for phytosiderophore production.
    Itai R; Suzuki K; Yamaguchi H; Nakanishi H; Nishizawa NK; Yoshimura E; Mori S
    J Exp Bot; 2000 Jul; 51(348):1179-88. PubMed ID: 10937693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iron Inefficiency in Maize Mutant ys1 (Zea mays L. cv Yellow-Stripe) Is Caused by a Defect in Uptake of Iron Phytosiderophores.
    Von Wiren N; Mori S; Marschner H; Romheld V
    Plant Physiol; 1994 Sep; 106(1):71-77. PubMed ID: 12232304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic Interactions between
    Boiteau RM; Markillie LM; Hoyt DW; Hu D; Chu RK; Mitchell HD; Pasa-Tolic L; Jansson JK; Jansson C
    mSystems; 2021 Jan; 6(1):. PubMed ID: 33402348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Humic Acid Alleviates Fe Chlorosis in Graminaceous Plants Through Coordinated Fe-Dependent and Fe-Independent Mechanisms.
    Garnica M; Baigorri R; San Francisco S; Zamarreño AM; Garcia-Mina JM
    Front Plant Sci; 2022; 13():803013. PubMed ID: 35185979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Senescence-induced iron mobilization in source leaves of barley (Hordeum vulgare) plants.
    Shi R; Weber G; Köster J; Reza-Hajirezaei M; Zou C; Zhang F; von Wirén N
    New Phytol; 2012 Jul; 195(2):372-383. PubMed ID: 22591276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron deficiency tolerance traits in wild (Hordeum maritimum) and cultivated barley (Hordeum vulgare).
    Yousfi S; Rabhi M; Abdelly C; Gharsalli M
    C R Biol; 2009 Jun; 332(6):523-33. PubMed ID: 19520315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Roots of Iron-Efficient Maize also Absorb Phytosiderophore-Chelated Zinc.
    Von Wiren N; Marschner H; Romheld V
    Plant Physiol; 1996 Aug; 111(4):1119-1125. PubMed ID: 12226351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iron acquisition by phytosiderophores contributes to cadmium tolerance.
    Meda AR; Scheuermann EB; Prechsl UE; Erenoglu B; Schaaf G; Hayen H; Weber G; von Wirén N
    Plant Physiol; 2007 Apr; 143(4):1761-73. PubMed ID: 17337530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phytosiderophore release in Aegilops tauschii and Triticum species under zinc and iron deficiencies.
    Tolay I; Erenoglu B; Römheld V; Braun HJ; Cakmak I
    J Exp Bot; 2001 May; 52(358):1093-9. PubMed ID: 11432925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Role of Ligand Exchange in the Uptake of Iron from Microbial Siderophores by Gramineous Plants.
    Yehuda Z; Shenker M; Romheld V; Marschner H; Hadar Y; Chen Y
    Plant Physiol; 1996 Nov; 112(3):1273-1280. PubMed ID: 12226445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supply of sulphur to S-deficient young barley seedlings restores their capability to cope with iron shortage.
    Astolfi S; Zuchi S; Hubberten HM; Pinton R; Hoefgen R
    J Exp Bot; 2010 Mar; 61(3):799-806. PubMed ID: 20018904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arbuscular mycorrhizal fungi mitigate Fe deficiency symptoms in sorghum through phytosiderophore-mediated Fe mobilization and restoration of redox status.
    Prity SA; Sajib SA; Das U; Rahman MM; Haider SA; Kabir AH
    Protoplasma; 2020 Sep; 257(5):1373-1385. PubMed ID: 32535729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.