These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 33874494)
1. Long-term effects of drought on photosynthesis of adult oak trees [Quercus petraea (Matt.) Liebl. and Quercus robur L.] in a natural stand. Epron D; Dreyer E New Phytol; 1993 Oct; 125(2):381-389. PubMed ID: 33874494 [TBL] [Abstract][Full Text] [Related]
2. Comparison of water-use efficiency of seedlings from two sympatric oak species: genotype x environment interactions. Ponton S; Dupouey JL; Bréda N; Dreyer E Tree Physiol; 2002 Apr; 22(6):413-22. PubMed ID: 11960766 [TBL] [Abstract][Full Text] [Related]
3. Seasonal photosynthetic responses of European oaks to drought and elevated daytime temperature. Arend M; Brem A; Kuster TM; Günthardt-Goerg MS Plant Biol (Stuttg); 2013 Jan; 15 Suppl 1():169-76. PubMed ID: 22776350 [TBL] [Abstract][Full Text] [Related]
4. Effects of severe dehydration on leaf photosynthesis in Quercus petraea (Matt.) Liebl.: photosystem II efficiency, photochemical and nonphotochemical fluorescence quenching and electrolyte leakage. Epron D; Dreyer E Tree Physiol; 1992 Apr; 10(3):273-84. PubMed ID: 14969984 [TBL] [Abstract][Full Text] [Related]
5. Drought and air warming affect the species-specific levels of stress-related foliar metabolites of three oak species on acidic and calcareous soil. Hu B; Simon J; Rennenberg H Tree Physiol; 2013 May; 33(5):489-504. PubMed ID: 23619385 [TBL] [Abstract][Full Text] [Related]
6. Photosynthesis of oak leaves under water stress: maintenance of high photochemical efficiency of photosystem II and occurrence of non-uniform CO(2) assimilation. Epron D; Dreyer E Tree Physiol; 1993 Sep; 13(2):107-17. PubMed ID: 14969889 [TBL] [Abstract][Full Text] [Related]
7. Short-term response to waterlogging in Quercus petraea and Quercus robur: A study of the root hydraulic responses and the transcriptional pattern of aquaporins. Rasheed-Depardieu C; Parelle J; Tatin-Froux F; Parent C; Capelli N Plant Physiol Biochem; 2015 Dec; 97():323-30. PubMed ID: 26519820 [TBL] [Abstract][Full Text] [Related]
8. Responses of deciduous forest trees to severe drought in Central Europe. Leuzinger S; Zotz G; Asshoff R; Körner C Tree Physiol; 2005 Jun; 25(6):641-50. PubMed ID: 15805084 [TBL] [Abstract][Full Text] [Related]
9. Leaf traits and tree rings suggest different water-use and carbon assimilation strategies by two co-occurring Quercus species in a Mediterranean mixed-forest stand in Tuscany, Italy. Tognetti R; Cherubini P; Marchi S; Raschi A Tree Physiol; 2007 Dec; 27(12):1741-51. PubMed ID: 17938105 [TBL] [Abstract][Full Text] [Related]
10. Intra- and interspecific diversity in the response to waterlogging of two co-occurring white oak species (Quercus robur and Q. petraea). Parelle J; Brendel O; Jolivet Y; Dreyer E Tree Physiol; 2007 Jul; 27(7):1027-34. PubMed ID: 17403656 [TBL] [Abstract][Full Text] [Related]
11. Seasonal trends in photosynthesis and electron transport during the Mediterranean summer drought in leaves of deciduous oaks. Osuna JL; Baldocchi DD; Kobayashi H; Dawson TE Tree Physiol; 2015 May; 35(5):485-500. PubMed ID: 25855663 [TBL] [Abstract][Full Text] [Related]
12. Contrasting ecophysiological strategies related to drought: the case of a mixed stand of Scots pine (Pinus sylvestris) and a submediterranean oak (Quercus subpyrenaica). Martín-Gómez P; Aguilera M; Pemán J; Gil-Pelegrín E; Ferrio JP Tree Physiol; 2017 Nov; 37(11):1478-1492. PubMed ID: 29040771 [TBL] [Abstract][Full Text] [Related]
13. Physiological responses of beech and sessile oak in a natural mixed stand during a dry summer. Raftoyannis Y; Radoglou K Ann Bot; 2002 Jun; 89(6):723-30. PubMed ID: 12102528 [TBL] [Abstract][Full Text] [Related]
14. Temperature response of leaf photosynthetic capacity in seedlings from seven temperate tree species. Dreyer E; Le Roux X; Montpied P; Daudet FA; Masson F Tree Physiol; 2001 Mar; 21(4):223-32. PubMed ID: 11276416 [TBL] [Abstract][Full Text] [Related]
15. Reduced photosynthesis in old oak (Quercus robur): the impact of crown and hydraulic architecture. Rust S; Roloff A Tree Physiol; 2002 Jun; 22(8):597-601. PubMed ID: 12045032 [TBL] [Abstract][Full Text] [Related]
16. Drought-induced photosynthetic inhibition and autumn recovery in two Mediterranean oak species (Quercus ilex and Quercus suber). Vaz M; Pereira JS; Gazarini LC; David TS; David JS; Rodrigues A; Maroco J; Chaves MM Tree Physiol; 2010 Aug; 30(8):946-56. PubMed ID: 20571151 [TBL] [Abstract][Full Text] [Related]
17. Effects of drought on mesophyll conductance and photosynthetic limitations at different tree canopy layers. Cano FJ; Sánchez-Gómez D; Rodríguez-Calcerrada J; Warren CR; Gil L; Aranda I Plant Cell Environ; 2013 Nov; 36(11):1961-80. PubMed ID: 23527762 [TBL] [Abstract][Full Text] [Related]
18. Stomatal limitation to CO2 assimilation and down-regulation of photosynthesis in Quercus ilex resprouts in response to slowly imposed drought. Peña-Rojas K; Aranda X; Fleck I Tree Physiol; 2004 Jul; 24(7):813-22. PubMed ID: 15123453 [TBL] [Abstract][Full Text] [Related]
19. Photosynthetic performance and water relations in young pubescent oak (Quercus pubescens) trees during drought stress and recovery. Gallé A; Haldimann P; Feller U New Phytol; 2007; 174(4):799-810. PubMed ID: 17504463 [TBL] [Abstract][Full Text] [Related]
20. Seasonal variation of leaf ecophysiological traits within the canopy of Quercus petraea (Matt.) Liebl. trees. Szöllösi E; Oláh V; Kanalas P; Kis J; Fenyvesi A; Mészáros I Acta Biol Hung; 2010; 61 Suppl():172-88. PubMed ID: 21565775 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]