These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 33874498)

  • 1. The epidermal surface of the maize root tip: I. Development in normal roots.
    Abeysekera RM; McCULLY ME
    New Phytol; 1993 Oct; 125(2):413-429. PubMed ID: 33874498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The epidermal surface of the maize root tip: III. Isolation of the surface and characterization of some of its structural and mechanical properties.
    Abeysekera RM; McCully ME
    New Phytol; 1994 Jun; 127(2):321-333. PubMed ID: 33874521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The epidermal surface of the maize root tip: II. Abnormalities in a mutant which grows crookedly through soil.
    Abeysekera RM; McCully ME
    New Phytol; 1993 Dec; 125(4):801-811. PubMed ID: 33874448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Pellicle-Another Strategy of the Root Apex Protection against Mechanical Stress?
    Potocka I; Szymanowska-Pułka J
    Int J Mol Sci; 2021 Nov; 22(23):. PubMed ID: 34884528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Does salinity reduce growth in maize root epidermal cells by inhibiting their capacity for cell wall acidification?
    Zidan I; Azaizeh H; Neumann PM
    Plant Physiol; 1990 May; 93(1):7-11. PubMed ID: 16667468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suberin lamellae in the hypodermis of maize (Zea mays) roots; development and factors affecting the permeability of hypodermal layers.
    Clarkson DT; Robards AW; Stephens JE; Stark M
    Plant Cell Environ; 1987 Jan; 10(1):83-93. PubMed ID: 28692152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roothairless5, which functions in maize (Zea mays L.) root hair initiation and elongation encodes a monocot-specific NADPH oxidase.
    Nestler J; Liu S; Wen TJ; Paschold A; Marcon C; Tang HM; Li D; Li L; Meeley RB; Sakai H; Bruce W; Schnable PS; Hochholdinger F
    Plant J; 2014 Sep; 79(5):729-40. PubMed ID: 24902980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immunogold localization of plant surface arabinogalactan-proteins using glycerol liquid substitution and scanning electron microscopy.
    Samaj J; Ensikat HJ; Baluska F; Knox JP; Barthlott W; Volkmann D
    J Microsc; 1999 Feb; 193(Pt 2):150-7. PubMed ID: 10048218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microsurgical removal of epidermal and cortical cells: evidence that the gravitropic signal moves through the outer cell layers in primary roots of maize.
    Yang RL; Evans ML; Moore R
    Planta; 1990 Mar; 180(4):530-6. PubMed ID: 24202098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Progressive inhibition by water deficit of cell wall extensibility and growth along the elongation zone of maize roots is related to increased lignin metabolism and progressive stelar accumulation of wall phenolics.
    Fan L; Linker R; Gepstein S; Tanimoto E; Yamamoto R; Neumann PM
    Plant Physiol; 2006 Feb; 140(2):603-12. PubMed ID: 16384904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The spatially variable inhibition by water deficit of maize root growth correlates with altered profiles of proton flux and cell wall pH.
    Fan L; Neumann PM
    Plant Physiol; 2004 Aug; 135(4):2291-300. PubMed ID: 15286291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CELLULAR PACKETS, CELL DIVISION AND MORPHOGENESIS IN THE PRIMARY ROOT MERISTEM OF ZEA MAYS L.
    Barlow PW
    New Phytol; 1987 Jan; 105(1):27-56. PubMed ID: 33874022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microsurgical removal of epidermal and cortical cells: evidence that the gravitropic signal moves through the outer cell layers in primary roots of maize.
    Yang RL; Evans ML; Moore R
    Planta; 1990; 180():530-6. PubMed ID: 11538176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphometric analysis of epidermal differentiation in primary roots of Zea mays.
    Moore R; Smith HS
    Am J Bot; 1990 Jun; 77(6):727-35. PubMed ID: 11537494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomics of Maize Root Development.
    Hochholdinger F; Marcon C; Baldauf JA; Yu P; Frey FP
    Front Plant Sci; 2018; 9():143. PubMed ID: 29556242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Root hairs aid soil penetration by anchoring the root surface to pore walls.
    Bengough AG; Loades K; McKenzie BM
    J Exp Bot; 2016 Feb; 67(4):1071-8. PubMed ID: 26798027
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The root epidermis of Echium plantagineum L.: a novel type of pattern based on the distribution of short and long root hairs.
    Tsai SL; Harris PJ; Lovell PH
    Planta; 2003 Jun; 217(2):238-44. PubMed ID: 12783331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Correlation of Profiles of Surface pH and Elongation Growth in Maize Roots.
    Peters WS; Felle HH
    Plant Physiol; 1999 Nov; 121(3):905-912. PubMed ID: 10557239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The rhizosphere in Zea: new insight into its structure and development.
    Vermeer J; McCully ME
    Planta; 1982 Nov; 156(1):45-61. PubMed ID: 24272215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graviresponsiveness of surgically altered primary roots of Zea mays.
    Maimon E; Moore R
    Ann Bot; 1991 Feb; 67(2):145-51. PubMed ID: 11537255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.