These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 33874571)

  • 1. The dynamics of infection by the take-all fungus on seminal roots of wheat: sensitivity analysis of a stochastic simulation model.
    Gilligan CA
    New Phytol; 1994 Nov; 128(3):539-553. PubMed ID: 33874571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling of early infection of cereal roots by the take-all fungus: a detailed mechanistic simulator.
    Gilligan CA; Brassett PR; Campbell A
    New Phytol; 1994 Nov; 128(3):515-537. PubMed ID: 33874569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of primary and secondary infection in take-all epidemics.
    Bailey DJ; Gilligan CA
    Phytopathology; 1999 Jan; 89(1):84-91. PubMed ID: 18944808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Epidemiological Analysis of the Role of Disease-Induced Root Growth in the Differential Response of Two Cultivars of Winter Wheat to Infection by Gaeumannomyces graminis var. tritici.
    Bailey DJ; Kleczkowski A; Gilligan CA
    Phytopathology; 2006 May; 96(5):510-6. PubMed ID: 18944311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epidemiology and chemical control of take-all on seminal and adventitious roots of wheat.
    Bailey DJ; Paveley N; Pillinger C; Foulkes J; Spink J; Gilligan CA
    Phytopathology; 2005 Jan; 95(1):62-8. PubMed ID: 18943837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling and analysis of disease-induced host growth in the epidemiology of take-all.
    Bailey DJ; Gilligan CA
    Phytopathology; 2004 May; 94(5):535-40. PubMed ID: 18943774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EARLY SENESCENCE OF THE ROOT CORTEX OF AGRICULTURAL GRASSES, AND OF WHEAT FOLLOWING ROOT AMPUTATION OR INFECTION BY THE TAKE-ALL FUNGUS.
    Kirk JJ; Deacon JW
    New Phytol; 1986 Sep; 104(1):63-75. PubMed ID: 33873808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of wheat roots infected with the pathogenic fungus Gaeumannomyces graminis var. tritici on gene expression of the biocontrol bacterium Pseudomonas fluorescens Pf29Arp.
    Barret M; Frey-Klett P; Guillerm-Erckelboudt AY; Boutin M; Guernec G; Sarniguet A
    Mol Plant Microbe Interact; 2009 Dec; 22(12):1611-23. PubMed ID: 19888826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene expression during infection of wheat roots by the 'take-all' fungus Gaeumannomyces graminis.
    Guilleroux M; Osbourn A
    Mol Plant Pathol; 2004 May; 5(3):203-16. PubMed ID: 20565610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of bacterial polysaccharides on the growth of Gaeumannomyces graminis var. tritici and wheat roots.
    Lasík J; Stanĕk M; Vancura V; Wurst M
    Folia Microbiol (Praha); 1979; 24(3):262-8. PubMed ID: 468081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. First Report of Gaeumannomyces graminis var. graminis on Kikuyugrass (Pennisetum clandestinum) in the United States.
    Wong FP; Gelernter W; Stowell L; Tisserat NA
    Plant Dis; 2003 May; 87(5):600. PubMed ID: 30812971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative Transcriptome Profiling of
    Kang X; Guo Y; Leng S; Xiao L; Wang L; Xue Y; Liu C
    Front Microbiol; 2019; 10():1474. PubMed ID: 31338074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Comparative Transcriptomic and Proteomic Analysis of Hexaploid Wheat's Responses to Colonization by
    Kang X; Wang L; Guo Y; Ul Arifeen MZ; Cai X; Xue Y; Bu Y; Wang G; Liu C
    Mol Plant Microbe Interact; 2019 Oct; 32(10):1336-1347. PubMed ID: 31125282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of crop management on take-all development and disease cycles on winter wheat.
    Colbach N; Lucas P; Meynard JM
    Phytopathology; 1997 Jan; 87(1):26-32. PubMed ID: 18945150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. THE INFLUENCE OF ROOT GROWTH AND INOCULUM DENSITY ON THE DYNAMICS OF ROOT DISEASE EPIDEMICS: THEORETICAL ANALYSIS.
    Jeger MJ
    New Phytol; 1987 Oct; 107(2):459-478. PubMed ID: 33873835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel screening strategy reveals a potent Bacillus antagonist capable of mitigating wheat take-all disease caused by Gaeumannomyces graminis var. tritici.
    Zhang DD; Guo XJ; Wang YJ; Gao TG; Zhu BC
    Lett Appl Microbiol; 2017 Dec; 65(6):512-519. PubMed ID: 28977681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of some environmental factors on populations of Pratylenchus minyus in wheat.
    Kimpinski J; Wallace HR; Cunningham RB
    J Nematol; 1976 Oct; 8(4):310-4. PubMed ID: 19308238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microorganisms in the rhizosphere of wheat colonized by the fungus Gaeumannomyces graminis var. tritici.
    Bednárová M; Stanĕk M; Vancura V; Veselý D
    Folia Microbiol (Praha); 1979; 24(3):253-61. PubMed ID: 112016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rhizosphere microflora and colonization of wheat roots by Gaeumannomyces graminis var. tritici after foliar application of urea and benomyl.
    Vraný J; Stanĕk M; Vancura V
    Folia Microbiol (Praha); 1980; 25(6):476-82. PubMed ID: 6777280
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.