These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 33874571)

  • 21. Effect of Placement of Inoculum of Gaeumannomyces graminis var. tritici on Severity of Take-all in Winter Wheat.
    Kabbage M; Bockus WW
    Plant Dis; 2002 Mar; 86(3):298-303. PubMed ID: 30818611
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gaeumannomyces graminis, the take-all fungus and its relatives.
    Freeman J; Ward E
    Mol Plant Pathol; 2004 Jul; 5(4):235-52. PubMed ID: 20565593
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Development of a system for Polymyxa graminis infection and transmission of wheat yellow mosaic virus].
    Tian Z; Chen X; Zhu K; Yu J; Liu Y
    Wei Sheng Wu Xue Bao; 2000 Aug; 40(4):352-8. PubMed ID: 12548954
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Changes in population structure of the soilborne fungus Gaeumannomyces graminis var. tritici during continuous wheat cropping.
    Lebreton L; Lucas P; Dugas F; Guillerm AY; Schoeny A; Sarniguet A
    Environ Microbiol; 2004 Nov; 6(11):1174-85. PubMed ID: 15479250
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A stochastic model for early HIV-1 population dynamics.
    Tuckwell HC; Le Corfec E
    J Theor Biol; 1998 Dec; 195(4):451-63. PubMed ID: 9837702
    [TBL] [Abstract][Full Text] [Related]  

  • 26. First Report of Gaeumannomyces graminis var. graminis on Seashore Paspalum in the United States.
    Elmore WC; Gooch MD; Stiles CM
    Plant Dis; 2002 Dec; 86(12):1405. PubMed ID: 30818459
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Temporal Dynamics of Phytophthora Blight on Bell Pepper in Relation to the Mechanisms of Dispersal of Primary Inoculum of Phytophthora capsici in Soil.
    Sujkowski LS; Parra GR; Gumpertz ML; Ristaino JB
    Phytopathology; 2000 Feb; 90(2):148-56. PubMed ID: 18944603
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The development of endomycorrhizal root systems: VII. A detailed study of effects of soil phosphorus on colonization.
    Amijee F; Tinker PB; Stribley DP
    New Phytol; 1989 Mar; 111(3):435-446. PubMed ID: 33874001
    [TBL] [Abstract][Full Text] [Related]  

  • 29.
    Worsley SF; Newitt J; Rassbach J; Batey SFD; Holmes NA; Murrell JC; Wilkinson B; Hutchings MI
    Appl Environ Microbiol; 2020 Aug; 86(16):. PubMed ID: 32561579
    [No Abstract]   [Full Text] [Related]  

  • 30. Predicting Take-All Severity in Second-Year Wheat Using Soil DNA Concentrations of Gaeumannomyces graminis var. tritici Determined with qPCR.
    Bithell SL; McKay A; Butler RC; Herdina ; Ophel-Keller K; Hartley D; Cromey MG
    Plant Dis; 2012 Mar; 96(3):443-451. PubMed ID: 30727140
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modeling of take-all epidemics to evaluate the efficacy of a new seed-treatment fungicide on wheat.
    Schoeny A; Lucas P
    Phytopathology; 1999 Oct; 89(10):954-61. PubMed ID: 18944741
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Linear relationship between Gaeumannomyces graminis var. tritici (Ggt) genotypic frequencies and disease severity on wheat roots in the field.
    Lebreton L; Gosme M; Lucas P; Guillerm-Erckelboudt AY; Sarniguet A
    Environ Microbiol; 2007 Feb; 9(2):492-9. PubMed ID: 17222147
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Developing rainfall- and temperature-based models to describe infection of canola under field conditions caused by pycnidiospores of Leptosphaeria maculans.
    Ghanbarnia K; Dilantha Fernando WG; Crow G
    Phytopathology; 2009 Jul; 99(7):879-86. PubMed ID: 19522586
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Colonization of barley roots by endophytic fungi and their reduction of take-all caused by Gaeumannomyces graminis var. tritici.
    MaciĆ”-Vicente JG; Jansson HB; Mendgen K; Lopez-Llorca LV
    Can J Microbiol; 2008 Aug; 54(8):600-9. PubMed ID: 18772922
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Persistence of DNA of Gaeumannomyces graminis var. tritici in soil as measured by a DNA-based assay.
    Herdina ; Neate S; Jabaji-Hare S; Ophel-Keller K
    FEMS Microbiol Ecol; 2004 Feb; 47(2):143-52. PubMed ID: 19712330
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gaeumannomyces graminis var. graminis Isolated from Emerald Zoysiagrass in Texas.
    Tomaso-Peterson M; Trevathan LE; Gonzalez MS; Colbaugh PF
    Plant Dis; 2000 Oct; 84(10):1151. PubMed ID: 30831912
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Take-All Root Rot of St. Augustinegrass: First Report in Mississippi.
    Tomaso-Peterson M; Trevathan LE; Gonzalez MS
    Plant Dis; 2000 Aug; 84(8):921. PubMed ID: 30832150
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Detection of Gaeumannomyces graminis Varieties Using Polymerase Chain Reaction with Variety-Specific Primers.
    Fouly HM; Wilkinson HT
    Plant Dis; 2000 Sep; 84(9):947-951. PubMed ID: 30832025
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Selection of Reference Genes for Real-time Quantitative PCR Normalization in the Process of
    Xie LH; Quan X; Zhang J; Yang YY; Sun RH; Xia MC; Xue BG; Wu C; Han XY; Xue YN; Yang LR
    Plant Pathol J; 2019 Feb; 35(1):11-18. PubMed ID: 30828275
    [No Abstract]   [Full Text] [Related]  

  • 40. Inoculum dynamics ofGliocladium virens associated with roots of cotton seedlings.
    Park YH; Kenerley CM; Stack JP
    Microb Ecol; 1992 Jun; 23(2):169-79. PubMed ID: 24192862
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.