These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
911 related articles for article (PubMed ID: 33874604)
1. The role of active oxygen in the response of plants to water deficit and desiccation. Smirnoff N New Phytol; 1993 Sep; 125(1):27-58. PubMed ID: 33874604 [TBL] [Abstract][Full Text] [Related]
2. [Free oxygen radiacals and kidney diseases--part I]. Sakac V; Sakac M Med Pregl; 2000; 53(9-10):463-74. PubMed ID: 11320727 [TBL] [Abstract][Full Text] [Related]
3. THE ROLE OF FREE RADICALS IN SENESCENCE AND WOUNDING. Thompson JE; Legge RL; Barber RF New Phytol; 1987 Mar; 105(3):317-344. PubMed ID: 33873900 [TBL] [Abstract][Full Text] [Related]
4. Protection of photosynthesis in desiccation-tolerant resurrection plants. Challabathula D; Zhang Q; Bartels D J Plant Physiol; 2018 Aug; 227():84-92. PubMed ID: 29778495 [TBL] [Abstract][Full Text] [Related]
5. Regulation of ROS through proficient modulations of antioxidative defense system maintains the structural and functional integrity of photosynthetic apparatus and confers drought tolerance in the facultative halophyte Salvadora persica L. Rangani J; Panda A; Patel M; Parida AK J Photochem Photobiol B; 2018 Dec; 189():214-233. PubMed ID: 30396132 [TBL] [Abstract][Full Text] [Related]
7. Melia azedarach plants show tolerance properties to water shortage treatment: an ecophysiological study. Dias MC; Azevedo C; Costa M; Pinto G; Santos C Plant Physiol Biochem; 2014 Feb; 75():123-7. PubMed ID: 24440555 [TBL] [Abstract][Full Text] [Related]
8. Surviving metabolic arrest: photosynthesis during desiccation and rehydration in resurrection plants. Challabathula D; Puthur JT; Bartels D Ann N Y Acad Sci; 2016 Feb; 1365(1):89-99. PubMed ID: 26376004 [TBL] [Abstract][Full Text] [Related]
9. Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Jiang M; Zhang J Plant Cell Physiol; 2001 Nov; 42(11):1265-73. PubMed ID: 11726712 [TBL] [Abstract][Full Text] [Related]
10. The knockdown of chloroplastic ascorbate peroxidases reveals its regulatory role in the photosynthesis and protection under photo-oxidative stress in rice. Caverzan A; Bonifacio A; Carvalho FE; Andrade CM; Passaia G; Schünemann M; Maraschin Fdos S; Martins MO; Teixeira FK; Rauber R; Margis R; Silveira JA; Margis-Pinheiro M Plant Sci; 2014 Jan; 214():74-87. PubMed ID: 24268165 [TBL] [Abstract][Full Text] [Related]
11. Drought and oxidative load in the leaves of C3 plants: a predominant role for photorespiration? Noctor G; Veljovic-Jovanovic S; Driscoll S; Novitskaya L; Foyer CH Ann Bot; 2002 Jun; 89 Spec No(7):841-50. PubMed ID: 12102510 [TBL] [Abstract][Full Text] [Related]
12. Efficient modulation of photosynthetic apparatus confers desiccation tolerance in the resurrection plant Boea hygrometrica. Tan T; Sun Y; Luo S; Zhang C; Zhou H; Lin H Plant Cell Physiol; 2017 Nov; 58(11):1976-1990. PubMed ID: 29036694 [TBL] [Abstract][Full Text] [Related]
13. Responses of antioxidant enzymes to cold and high light are not correlated to freezing tolerance in natural accessions of Arabidopsis thaliana. Distelbarth H; Nägele T; Heyer AG Plant Biol (Stuttg); 2013 Nov; 15(6):982-90. PubMed ID: 23578291 [TBL] [Abstract][Full Text] [Related]
14. Protection against photooxidative damage provided by enzymatic and non-enzymatic antioxidant system in sorghum seedlings. Sankhalkar S; Sharma PK Indian J Exp Biol; 2002 Nov; 40(11):1260-8. PubMed ID: 13677629 [TBL] [Abstract][Full Text] [Related]
15. Wheat seedlings as a model to understand desiccation tolerance and sensitivity. Farrant JM; Bailly C; Leymarie J; Hamman B; Côme D; Corbineau F Physiol Plant; 2004 Apr; 120(4):563-574. PubMed ID: 15032818 [TBL] [Abstract][Full Text] [Related]
16. Ozone and desiccation tolerance in chlorolichens are intimately connected: a case study based on two species with different ecology. Bertuzzi S; Pellegrini E; Candotto Carniel F; Incerti G; Lorenzini G; Nali C; Tretiach M Environ Sci Pollut Res Int; 2018 Mar; 25(9):8089-8103. PubMed ID: 28646314 [TBL] [Abstract][Full Text] [Related]
17. A drought-sensitive barley variety displays oxidative stress and strongly increased contents in low-molecular weight antioxidant compounds during water deficit compared to a tolerant variety. Marok MA; Tarrago L; Ksas B; Henri P; Abrous-Belbachir O; Havaux M; Rey P J Plant Physiol; 2013 May; 170(7):633-45. PubMed ID: 23541087 [TBL] [Abstract][Full Text] [Related]
18. Effect of some osmoregulators on photosynthesis, lipid peroxidation, antioxidative capacity, and productivity of barley (Hordeum vulgare L.) under water deficit stress. Abdelaal KAA; Hafez YM; El-Afry MM; Tantawy DS; Alshaal T Environ Sci Pollut Res Int; 2018 Oct; 25(30):30199-30211. PubMed ID: 30155630 [TBL] [Abstract][Full Text] [Related]
19. Photosynthetic sea slugs induce protective changes to the light reactions of the chloroplasts they steal from algae. Havurinne V; Tyystjärvi E Elife; 2020 Oct; 9():. PubMed ID: 33077025 [TBL] [Abstract][Full Text] [Related]
20. Toxic effects of heavy metals Pb and Cd on mulberry (Morus alba L.) seedling leaves: Photosynthetic function and reactive oxygen species (ROS) metabolism responses. Huihui Z; Xin L; Zisong X; Yue W; Zhiyuan T; Meijun A; Yuehui Z; Wenxu Z; Nan X; Guangyu S Ecotoxicol Environ Saf; 2020 Jun; 195():110469. PubMed ID: 32179235 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]