These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 33874606)
21. Proteomic analysis of Mesembryanthemum crystallinum leaf microsomal fractions finds an imbalance in V-ATPase stoichiometry during the salt-induced transition from C3 to CAM. Cosentino C; Di Silvestre D; Fischer-Schliebs E; Homann U; De Palma A; Comunian C; Mauri PL; Thiel G Biochem J; 2013 Mar; 450(2):407-15. PubMed ID: 23252380 [TBL] [Abstract][Full Text] [Related]
22. The effects of salinity, crassulacean acid metabolism and plant age on the carbon isotope composition of Mesembryanthemum crystallinum L., a halophytic C(3)-CAM species. Winter K; Holtum JA Planta; 2005 Sep; 222(1):201-9. PubMed ID: 15968514 [TBL] [Abstract][Full Text] [Related]
23. Expression of phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxylase kinase genes. Implications for genotypic capacity and phenotypic plasticity in the expression of crassulacean acid metabolism. Taybi T; Nimmo HG; Borland AM Plant Physiol; 2004 May; 135(1):587-98. PubMed ID: 15133148 [TBL] [Abstract][Full Text] [Related]
24. Laying the Foundation for Crassulacean Acid Metabolism (CAM) Biodesign: Expression of the C Lim SD; Lee S; Choi WG; Yim WC; Cushman JC Front Plant Sci; 2019; 10():101. PubMed ID: 30804970 [TBL] [Abstract][Full Text] [Related]
25. Salt regulation of transcript levels for the c subunit of a leaf vacuolar H(+)-ATPase in the halophyte Mesembryanthemum crystallinum. Tsiantis MS; Bartholomew DM; Smith JA Plant J; 1996 May; 9(5):729-36. PubMed ID: 8653119 [TBL] [Abstract][Full Text] [Related]
26. Influence of leaf water content on the C Herppich WB; Herppich M New Phytol; 1997 Jul; 136(3):425-432. PubMed ID: 33863001 [TBL] [Abstract][Full Text] [Related]
27. Phosphoenolpyruvate carboxylase kinase is controlled by a similar signaling cascade in CAM and C(4) plants. Bakrim N; Brulfert J; Vidal J; Chollet R Biochem Biophys Res Commun; 2001 Sep; 286(5):1158-62. PubMed ID: 11527421 [TBL] [Abstract][Full Text] [Related]
28. A salinity-induced gene from the halophyte M. crystallinum encodes a glycolytic enzyme, cofactor-independent phosphoglyceromutase. Forsthoefel NR; Vernon DM; Cushman JC Plant Mol Biol; 1995 Oct; 29(2):213-26. PubMed ID: 7579174 [TBL] [Abstract][Full Text] [Related]
29. CARBON DIOXIDE AND WATER DEMAND: CRASSULACEAN ACID METABOLISM (CAM), A VERSATILE ECOLOGICAL ADAPTATION EXEMPLIFYING THE NEED FOR INTEGRATION IN ECOPHYSIOLOGICAL WORK. Lüttge U New Phytol; 1987 Aug; 106(4):593-629. PubMed ID: 33874076 [TBL] [Abstract][Full Text] [Related]
30. At the Edges of Photosynthetic Metabolic Plasticity-On the Rapidity and Extent of Changes Accompanying Salinity Stress-Induced CAM Photosynthesis Withdrawal. Nosek M; Gawrońska K; Rozpądek P; Sujkowska-Rybkowska M; Miszalski Z; Kornaś A Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445127 [TBL] [Abstract][Full Text] [Related]
31. Competing carboxylases: circadian and metabolic regulation of Rubisco in C3 and CAM Mesembryanthemum crystallinum L. Davies BN; Griffiths H Plant Cell Environ; 2012 Jul; 35(7):1211-20. PubMed ID: 22239463 [TBL] [Abstract][Full Text] [Related]
32. Salt Requirement for Crassulacean Acid Metabolism in the Annual Succulent, Mesembryanthemum crystallinum. Bloom AJ Plant Physiol; 1979 Apr; 63(4):749-53. PubMed ID: 16660805 [TBL] [Abstract][Full Text] [Related]
33. Effect of hypermethylation of CCWGG sequences in DNA of Mesembryanthemum crystallinum plants on their adaptation to salt stress. Dyachenko OV; Zakharchenko NS; Shevchuk TV; Bohnert HJ; Cushman JC; Buryanov YI Biochemistry (Mosc); 2006 Apr; 71(4):461-5. PubMed ID: 16615868 [TBL] [Abstract][Full Text] [Related]
34. Induction of Crassulacean Acid Metabolism in the Facultative Halophyte Mesembryanthemum crystallinum by Abscisic Acid. Chu C; Dai Z; Ku MS; Edwards GE Plant Physiol; 1990 Jul; 93(3):1253-60. PubMed ID: 16667587 [TBL] [Abstract][Full Text] [Related]
35. Time Course of mRNA Induction Elicited by Salt Stress in the Common Ice Plant (Mesembryanthemum crystallinum). Michalowski CB; Olson SW; Piepenbrock M; Schmitt JM; Bohnert HJ Plant Physiol; 1989 Mar; 89(3):811-6. PubMed ID: 16666626 [TBL] [Abstract][Full Text] [Related]
36. Induction of crassulacean acid metabolism in Mesembryanthemum crystallinum increases reproductive success under conditions of drought and salinity stress. Winter K; Ziegler H Oecologia; 1992 Dec; 92(4):475-479. PubMed ID: 28313217 [TBL] [Abstract][Full Text] [Related]
37. Integrating diel starch metabolism with the circadian and environmental regulation of Crassulacean acid metabolism in Mesembryanthemum crystallinum. Dodd AN; Griffiths H; Taybi T; Cushman JC; Borland AM Planta; 2003 Mar; 216(5):789-97. PubMed ID: 12624766 [TBL] [Abstract][Full Text] [Related]
38. Growth and development of Mesembryanthemum crystallinum (Aizoaceae). Adams P; Nelson DE; Yamada S; Chmara W; Jensen RG; Bohnert HJ; Griffiths H New Phytol; 1998 Feb; 138(2):171-190. PubMed ID: 33863085 [TBL] [Abstract][Full Text] [Related]
39. Increased expression of a gene coding for NAD:glyceraldehyde-3-phosphate dehydrogenase during the transition from C3 photosynthesis to crassulacean acid metabolism in Mesembryanthemum crystallinum. Ostrem JA; Vernon DM; Bohnert HJ J Biol Chem; 1990 Feb; 265(6):3497-502. PubMed ID: 2303458 [TBL] [Abstract][Full Text] [Related]
40. Characterization of the plastidic phosphate translocators in the inducible crassulacean acid metabolism plant Mesembryanthemum crystallinum. Kore-eda S; Nozawa A; Okada Y; Takashi K; Azad MA; Ohnishi J; Nishiyama Y; Tozawa Y Biosci Biotechnol Biochem; 2013; 77(7):1511-6. PubMed ID: 23832369 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]