BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 33874877)

  • 1. CRISPeering: Bioengineering the Host Cells through CRISPRCas9 Genome Editing System as the Next-generation of Cell Factories.
    Morowvat MH
    Recent Pat Biotechnol; 2021 Oct; 15(2):137-147. PubMed ID: 33874877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR/Cas9 as a Genome Editing Tool for Targeted Gene Integration in CHO Cells.
    Sergeeva D; Camacho-Zaragoza JM; Lee JS; Kildegaard HF
    Methods Mol Biol; 2019; 1961():213-232. PubMed ID: 30912048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR/Cas9-mediated genome engineering of CHO cell factories: Application and perspectives.
    Lee JS; Grav LM; Lewis NE; Faustrup Kildegaard H
    Biotechnol J; 2015 Jul; 10(7):979-94. PubMed ID: 26058577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expanding the CRISPR toolbox for Chinese hamster ovary cells with comprehensive tools for Mad7 genome editing.
    Rojek JB; Basavaraju Y; Nallapareddy S; Bulté DB; Baumgartner R; Schoffelen S; Grav LM; Goletz S; Pedersen LE
    Biotechnol Bioeng; 2023 Jun; 120(6):1478-1491. PubMed ID: 36864663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Site-Specific Integration Reporter System That Enables Rapid Evaluation of CRISPR/Cas9-Mediated Genome Editing Strategies in CHO Cells.
    Hamaker NK; Lee KH
    Biotechnol J; 2020 Aug; 15(8):e2000057. PubMed ID: 32500600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of CRISPR/Cas9 Genome Editing to Improve Recombinant Protein Production in CHO Cells.
    Grav LM; la Cour Karottki KJ; Lee JS; Kildegaard HF
    Methods Mol Biol; 2017; 1603():101-118. PubMed ID: 28493126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Road to the future of systems biotechnology: CRISPR-Cas-mediated metabolic engineering for recombinant protein production.
    Roointan A; Morowvat MH
    Biotechnol Genet Eng Rev; 2016; 32(1-2):74-91. PubMed ID: 28052722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR-Cas9 Genome Editing Tool for the Production of Industrial Biopharmaceuticals.
    Khan AH; Tye GJ; Noordin R
    Mol Biotechnol; 2020 Sep; 62(9):401-411. PubMed ID: 32749657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR/Cas9 Platforms for Genome Editing in Plants: Developments and Applications.
    Ma X; Zhu Q; Chen Y; Liu YG
    Mol Plant; 2016 Jul; 9(7):961-74. PubMed ID: 27108381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One-step generation of triple knockout CHO cell lines using CRISPR/Cas9 and fluorescent enrichment.
    Grav LM; Lee JS; Gerling S; Kallehauge TB; Hansen AH; Kol S; Lee GM; Pedersen LE; Kildegaard HF
    Biotechnol J; 2015 Sep; 10(9):1446-56. PubMed ID: 25864574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR-Cas9/CRISPRi tools for cell factory construction in E. coli.
    Hashemi A
    World J Microbiol Biotechnol; 2020 Jun; 36(7):96. PubMed ID: 32583135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome Editing in Clostridium saccharoperbutylacetonicum N1-4 with the CRISPR-Cas9 System.
    Wang S; Dong S; Wang P; Tao Y; Wang Y
    Appl Environ Microbiol; 2017 May; 83(10):. PubMed ID: 28258147
    [No Abstract]   [Full Text] [Related]  

  • 13. Improving recombinant protein production in CHO cells using the CRISPR-Cas system.
    Kalkan AK; Palaz F; Sofija S; Elmousa N; Ledezma Y; Cachat E; Rios-Solis L
    Biotechnol Adv; 2023; 64():108115. PubMed ID: 36758652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR/Cas12a-mediated CHO genome engineering can be effectively integrated at multiple stages of the cell line generation process for bioproduction.
    Schweickert PG; Wang N; Sandefur SL; Lloyd ME; Konieczny SF; Frye CC; Cheng Z
    Biotechnol J; 2021 Apr; 16(4):e2000308. PubMed ID: 33369118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of an Efficient Genome Editing Tool in Bacillus licheniformis Using CRISPR-Cas9 Nickase.
    Li K; Cai D; Wang Z; He Z; Chen S
    Appl Environ Microbiol; 2018 Mar; 84(6):. PubMed ID: 29330178
    [No Abstract]   [Full Text] [Related]  

  • 16. Challenges of in vitro genome editing with CRISPR/Cas9 and possible solutions: A review.
    Ebrahimi V; Hashemi A
    Gene; 2020 Aug; 753():144813. PubMed ID: 32470504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Progress of CRISPR-Cas Based Genome Editing in Photosynthetic Microbes.
    Naduthodi MIS; Barbosa MJ; van der Oost J
    Biotechnol J; 2018 Sep; 13(9):e1700591. PubMed ID: 29396999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hijacking CRISPR-Cas for high-throughput bacterial metabolic engineering: advances and prospects.
    Mougiakos I; Bosma EF; Ganguly J; van der Oost J; van Kranenburg R
    Curr Opin Biotechnol; 2018 Apr; 50():146-157. PubMed ID: 29414054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Precision genome editing in plants: state-of-the-art in CRISPR/Cas9-based genome engineering.
    Wada N; Ueta R; Osakabe Y; Osakabe K
    BMC Plant Biol; 2020 May; 20(1):234. PubMed ID: 32450802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Smart Programmable CRISPR Technology: A Next Generation Genome Editing Tool for Investigators.
    Chakraborty C; Teoh SL; Das S
    Curr Drug Targets; 2017; 18(14):1653-1663. PubMed ID: 27231109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.