These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 33875074)
1. Core-Shell Poly(l-lactic acid)-Hyaluronic Acid Nanofibers for Cell Culture and Pelvic Ligament Tissue Engineering. Huang X; Wang H; Wei Y; Yang Z; Huang R; Liang W; Qin X; Guo W; Ren D; Jin L; Jiang X; Wang H J Biomed Nanotechnol; 2021 Mar; 17(3):399-406. PubMed ID: 33875074 [TBL] [Abstract][Full Text] [Related]
2. Fabrication, mechanical property and in vitro evaluation of poly (L-lactic acid-co-ε-caprolactone) core-shell nanofiber scaffold for tissue engineering. Li T; Tian L; Liao S; Ding X; Irvine SA; Ramakrishna S J Mech Behav Biomed Mater; 2019 Oct; 98():48-57. PubMed ID: 31195187 [TBL] [Abstract][Full Text] [Related]
3. Osteogenic differentiation of preconditioned bone marrow mesenchymal stem cells with lipopolysaccharide on modified poly-l-lactic-acid nanofibers. Kooshki H; Ghollasi M; Halabian R; Kazemi NM J Cell Physiol; 2019 May; 234(5):5343-5353. PubMed ID: 30515792 [TBL] [Abstract][Full Text] [Related]
4. Potential of novel electrospun core-shell structured polyurethane/starch (hyaluronic acid) nanofibers for skin tissue engineering: In vitro and in vivo evaluation. Movahedi M; Asefnejad A; Rafienia M; Khorasani MT Int J Biol Macromol; 2020 Mar; 146():627-637. PubMed ID: 31805327 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of the potential of kartogenin encapsulated poly(L-lactic acid-co-caprolactone)/collagen nanofibers for tracheal cartilage regeneration. Yin H; Wang J; Gu Z; Feng W; Gao M; Wu Y; Zheng H; He X; Mo X J Biomater Appl; 2017 Sep; 32(3):331-341. PubMed ID: 28658997 [TBL] [Abstract][Full Text] [Related]
6. Cold atmospheric plasma (CAP)-modified and bioactive protein-loaded core-shell nanofibers for bone tissue engineering applications. Wang M; Zhou Y; Shi D; Chang R; Zhang J; Keidar M; Webster TJ Biomater Sci; 2019 May; 7(6):2430-2439. PubMed ID: 30933194 [TBL] [Abstract][Full Text] [Related]
7. Coaxially electrospun core/shell structured poly(L-lactide) acid/chitosan nanofibers for potential drug carrier in tissue engineering. Ji X; Yang W; Wang T; Mao C; Guo L; Xiao J; He N J Biomed Nanotechnol; 2013 Oct; 9(10):1672-8. PubMed ID: 24015496 [TBL] [Abstract][Full Text] [Related]
8. Electrospun nanostructured scaffolds for bone tissue engineering. Prabhakaran MP; Venugopal J; Ramakrishna S Acta Biomater; 2009 Oct; 5(8):2884-93. PubMed ID: 19447211 [TBL] [Abstract][Full Text] [Related]
9. In vitro proliferation and differentiation of human bone marrow mesenchymal stem cells into osteoblasts on nanocomposite scaffolds based on bioactive glass (64SiO Shamsi M; Karimi M; Ghollasi M; Nezafati N; Shahrousvand M; Kamali M; Salimi A Mater Sci Eng C Mater Biol Appl; 2017 Sep; 78():114-123. PubMed ID: 28575950 [TBL] [Abstract][Full Text] [Related]
11. Highly aligned core-shell structured nanofibers for promoting phenotypic expression of vSMCs for vascular regeneration. Yuan H; Qin J; Xie J; Li B; Yu Z; Peng Z; Yi B; Lou X; Lu X; Zhang Y Nanoscale; 2016 Sep; 8(36):16307-16322. PubMed ID: 27714091 [TBL] [Abstract][Full Text] [Related]
12. Stem cell differentiation on electrospun nanofibrous substrates for vascular tissue engineering. Jia L; Prabhakaran MP; Qin X; Ramakrishna S Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4640-50. PubMed ID: 24094171 [TBL] [Abstract][Full Text] [Related]
13. Novel poly(L-lactic acid)/hyaluronic acid macroporous hybrid scaffolds: characterization and assessment of cytotoxicity. Antunes JC; Oliveira JM; Reis RL; Soria JM; Gómez-Ribelles JL; Mano JF J Biomed Mater Res A; 2010 Sep; 94(3):856-69. PubMed ID: 20336752 [TBL] [Abstract][Full Text] [Related]
14. Poly(L-lactic acid) nanocylinders as nanofibrous structures for macroporous gelatin scaffolds. Lee JB; Jeong SI; Bae MS; Heo DN; Heo JS; Hwang YS; Lee HW; Kwon IK J Nanosci Nanotechnol; 2011 Jul; 11(7):6371-6. PubMed ID: 22121718 [TBL] [Abstract][Full Text] [Related]
15. Distinctive degradation behaviors of electrospun polyglycolide, poly(DL-lactide-co-glycolide), and poly(L-lactide-co-epsilon-caprolactone) nanofibers cultured with/without porcine smooth muscle cells. Dong Y; Yong T; Liao S; Chan CK; Stevens MM; Ramakrishna S Tissue Eng Part A; 2010 Jan; 16(1):283-98. PubMed ID: 19839726 [TBL] [Abstract][Full Text] [Related]
16. Electrospinning of aniline pentamer-graft-gelatin/PLLA nanofibers for bone tissue engineering. Liu Y; Cui H; Zhuang X; Wei Y; Chen X Acta Biomater; 2014 Dec; 10(12):5074-5080. PubMed ID: 25200841 [TBL] [Abstract][Full Text] [Related]
17. Electrospun nanofibrous scaffolds of poly (L-lactic acid)-dicalcium silicate composite via ultrasonic-aging technique for bone regeneration. Dong S; Sun J; Li Y; Li J; Cui W; Li B Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():426-33. PubMed ID: 24411397 [TBL] [Abstract][Full Text] [Related]
18. Gum tragacanth/poly(l-lactic acid) nanofibrous scaffolds for application in regeneration of peripheral nerve damage. Ranjbar-Mohammadi M; Prabhakaran MP; Bahrami SH; Ramakrishna S Carbohydr Polym; 2016 Apr; 140():104-12. PubMed ID: 26876833 [TBL] [Abstract][Full Text] [Related]
19. Interaction of iPSC-derived neural stem cells on poly(L-lactic acid) nanofibrous scaffolds for possible use in neural tissue engineering. Lin C; Liu C; Zhang L; Huang Z; Zhao P; Chen R; Pang M; Chen Z; He L; Luo C; Rong L; Liu B Int J Mol Med; 2018 Feb; 41(2):697-708. PubMed ID: 29207038 [TBL] [Abstract][Full Text] [Related]
20. Composite poly-L-lactic acid/poly-(α,β)-DL-aspartic acid/collagen nanofibrous scaffolds for dermal tissue regeneration. Ravichandran R; Venugopal JR; Sundarrajan S; Mukherjee S; Sridhar R; Ramakrishna S Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1443-51. PubMed ID: 24364944 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]