These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
469 related articles for article (PubMed ID: 33875133)
41. Changes and their possible causes in δ13C of dark-respired CO2 and its putative bulk and soluble sources during maize ontogeny. Ghashghaie J; Badeck FW; Girardin C; Huignard C; Aydinlis Z; Fonteny C; Priault P; Fresneau C; Lamothe-Sibold M; Streb P; Terwilliger VJ J Exp Bot; 2016 Apr; 67(9):2603-15. PubMed ID: 26970389 [TBL] [Abstract][Full Text] [Related]
42. A Herbivore Tag-and-Trace System Reveals Contact- and Density-Dependent Repellence of a Root Toxin. Bont Z; Arce C; Huber M; Huang W; Mestrot A; Sturrock CJ; Erb M J Chem Ecol; 2017 Mar; 43(3):295-306. PubMed ID: 28303526 [TBL] [Abstract][Full Text] [Related]
43. Direct and indirect plant defenses are not suppressed by endosymbionts of a specialist root herbivore. Robert CA; Frank DL; Leach KA; Turlings TC; Hibbard BE; Erb M J Chem Ecol; 2013 Apr; 39(4):507-15. PubMed ID: 23440444 [TBL] [Abstract][Full Text] [Related]
44. Soil chemistry determines whether defensive plant secondary metabolites promote or suppress herbivore growth. Hu L; Wu Z; Robert CAM; Ouyang X; Züst T; Mestrot A; Xu J; Erb M Proc Natl Acad Sci U S A; 2021 Oct; 118(43):. PubMed ID: 34675080 [TBL] [Abstract][Full Text] [Related]
45. A field experiment with elevated atmospheric CO2-mediated changes to C4 crop-herbivore interactions. Xie H; Liu K; Sun D; Wang Z; Lu X; He K Sci Rep; 2015 Sep; 5():13923. PubMed ID: 26381457 [TBL] [Abstract][Full Text] [Related]
46. Facilitation and inhibition: changes in plant nitrogen and secondary metabolites mediate interactions between above-ground and below-ground herbivores. Huang W; Siemann E; Yang X; Wheeler GS; Ding J Proc Biol Sci; 2013 Sep; 280(1767):20131318. PubMed ID: 23902902 [TBL] [Abstract][Full Text] [Related]
47. Genetically engineered maize plants reveal distinct costs and benefits of constitutive volatile emissions in the field. Robert CA; Erb M; Hiltpold I; Hibbard BE; Gaillard MD; Bilat J; Degenhardt J; Cambet-Petit-Jean X; Turlings TC; Zwahlen C Plant Biotechnol J; 2013 Jun; 11(5):628-39. PubMed ID: 23425633 [TBL] [Abstract][Full Text] [Related]
48. Climate Change and Tritrophic Interactions: Will Modifications to Greenhouse Gas Emissions Increase the Vulnerability of Herbivorous Insects to Natural Enemies? Boullis A; Francis F; Verheggen FJ Environ Entomol; 2015 Apr; 44(2):277-86. PubMed ID: 26313181 [TBL] [Abstract][Full Text] [Related]
49. Herbivore-mediated material fluxes in a northern deciduous forest under elevated carbon dioxide and ozone concentrations. Meehan TD; Couture JJ; Bennett AE; Lindroth RL New Phytol; 2014 Oct; 204(2):397-407. PubMed ID: 25078062 [TBL] [Abstract][Full Text] [Related]
50. Yeast Volatomes Differentially Affect Larval Feeding in an Insect Herbivore. Ljunggren J; Borrero-Echeverry F; Chakraborty A; Lindblom TUT; Hedenström E; Karlsson M; Witzgall P; Bengtsson M Appl Environ Microbiol; 2019 Nov; 85(21):. PubMed ID: 31444202 [TBL] [Abstract][Full Text] [Related]
51. Methyl Anthranilate as a Repellent for Western Corn Rootworm Larvae (Coleoptera: Chrysomelidae). Bernklau EJ; Hibbard BE; Norton AP; Bjostad LB J Econ Entomol; 2016 Aug; 109(4):1683-90. PubMed ID: 27122493 [TBL] [Abstract][Full Text] [Related]
52. Early Identification of Root Damages Caused by Western Corn Rootworms Using a Minimally Invasive Root Phenotyping Robot-MISIRoot. Song Z; Zhao T; Jin J Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447843 [TBL] [Abstract][Full Text] [Related]
53. Switch-like and persistent memory formation in individual Lesar A; Tahir J; Wolk J; Gershow M Elife; 2021 Oct; 10():. PubMed ID: 34636720 [TBL] [Abstract][Full Text] [Related]
54. Birds exploit herbivore-induced plant volatiles to locate herbivorous prey. Amo L; Jansen JJ; van Dam NM; Dicke M; Visser ME Ecol Lett; 2013 Nov; 16(11):1348-55. PubMed ID: 24103093 [TBL] [Abstract][Full Text] [Related]
55. An influential meal: host plant dependent transcriptional variation in the beet armyworm, Spodoptera exigua (Lepidoptera: Noctuidae). Breeschoten T; Ros VID; Schranz ME; Simon S BMC Genomics; 2019 Nov; 20(1):845. PubMed ID: 31722664 [TBL] [Abstract][Full Text] [Related]
56. The nutritive value of dying maize and Setaria faberi roots for western corn rootworm (Coleoptera: Chrysomelidae) development. Olmer KJ; Hibbard BE J Econ Entomol; 2008 Oct; 101(5):1547-56. PubMed ID: 18950036 [TBL] [Abstract][Full Text] [Related]
57. Impact of MON863 transgenic roots is equivalent on western corn rootworm larvae for a wide range of maize phenologies. Hibbard BE; El Khishen AA; Vaughn TT J Econ Entomol; 2009 Aug; 102(4):1607-13. PubMed ID: 19736775 [TBL] [Abstract][Full Text] [Related]
58. Western Corn Rootworm (Coleoptera: Chrysomelidae) Larval Movement in eCry3.1Ab+mCry3A Seed Blend Scenarios. Zukoff SN; Zukoff AL; Geisert RW; Hibbard BE J Econ Entomol; 2016 Aug; 109(4):1834-45. PubMed ID: 27190042 [TBL] [Abstract][Full Text] [Related]
60. Protein profiling and tps23 induction in different maize lines in response to methyl jasmonate treatment and Diabrotica virgifera infestation. Capra E; Colombi C; De Poli P; Nocito FF; Cocucci M; Vecchietti A; Marocco A; Stile MR; Rossini L J Plant Physiol; 2015 Mar; 175():68-77. PubMed ID: 25506768 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]