These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 33875157)

  • 1. STQS: Interpretable multi-modal Spatial-Temporal-seQuential model for automatic Sleep scoring.
    Pathak S; Lu C; Nagaraj SB; van Putten M; Seifert C
    Artif Intell Med; 2021 Apr; 114():102038. PubMed ID: 33875157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An End-to-End Multi-Channel Convolutional Bi-LSTM Network for Automatic Sleep Stage Detection.
    Toma TI; Choi S
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DeepSleepNet: A Model for Automatic Sleep Stage Scoring Based on Raw Single-Channel EEG.
    Supratak A; Dong H; Wu C; Guo Y
    IEEE Trans Neural Syst Rehabil Eng; 2017 Nov; 25(11):1998-2008. PubMed ID: 28678710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SeriesSleepNet: an EEG time series model with partial data augmentation for automatic sleep stage scoring.
    Lee M; Kwak HG; Kim HJ; Won DO; Lee SW
    Front Physiol; 2023; 14():1188678. PubMed ID: 37700762
    [No Abstract]   [Full Text] [Related]  

  • 5. A Residual Based Attention Model for EEG Based Sleep Staging.
    Qu W; Wang Z; Hong H; Chi Z; Feng DD; Grunstein R; Gordon C
    IEEE J Biomed Health Inform; 2020 Oct; 24(10):2833-2843. PubMed ID: 32149700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Deep Transfer Learning Framework for Sleep Stage Classification with Single-Channel EEG Signals.
    ElMoaqet H; Eid M; Ryalat M; Penzel T
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Orthogonal convolutional neural networks for automatic sleep stage classification based on single-channel EEG.
    Zhang J; Yao R; Ge W; Gao J
    Comput Methods Programs Biomed; 2020 Jan; 183():105089. PubMed ID: 31586788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Jumping Knowledge Based Spatial-Temporal Graph Convolutional Networks for Automatic Sleep Stage Classification.
    Ji X; Li Y; Wen P
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():1464-1472. PubMed ID: 35584068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neonatal sleep stage identification using long short-term memory learning system.
    Fraiwan L; Alkhodari M
    Med Biol Eng Comput; 2020 Jun; 58(6):1383-1391. PubMed ID: 32281071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Multi-modal physiological time-frequency feature extraction network for accurate sleep stage classification].
    Hu K; Chen J; Zhang P; Xue W; Xie J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2024 Feb; 41(1):26-33. PubMed ID: 38403601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward Interpretable Sleep Stage Classification Using Cross-Modal Transformers.
    Pradeepkumar J; Anandakumar M; Kugathasan V; Suntharalingham D; Kappel SL; De Silva AC; Edussooriya CUS
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():2893-2904. PubMed ID: 39102323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-Modal Sleep Stage Classification With Two-Stream Encoder-Decoder.
    Zhang Z; Lin BS; Peng CW; Lin BS
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():2096-2105. PubMed ID: 38848223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Automated Wavelet-Based Sleep Scoring Model Using EEG, EMG, and EOG Signals with More Than 8000 Subjects.
    Sharma M; Yadav A; Tiwari J; Karabatak M; Yildirim O; Acharya UR
    Int J Environ Res Public Health; 2022 Jun; 19(12):. PubMed ID: 35742426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sleep stage classification using covariance features of multi-channel physiological signals on Riemannian manifolds.
    Jiang D; Ma Y; Wang Y
    Comput Methods Programs Biomed; 2019 Sep; 178():19-30. PubMed ID: 31416548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic sleep scoring with LSTM networks: impact of time granularity and input signals.
    Tăuțan AM; Rossi AC; Ionescu B
    Biomed Tech (Berl); 2022 Aug; 67(4):267-281. PubMed ID: 35660133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic Sleep Stage Classification Using Temporal Convolutional Neural Network and New Data Augmentation Technique from Raw Single-Channel EEG.
    Khalili E; Mohammadzadeh Asl B
    Comput Methods Programs Biomed; 2021 Jun; 204():106063. PubMed ID: 33823315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic sleep staging by a hybrid model based on deep 1D-ResNet-SE and LSTM with single-channel raw EEG signals.
    Li W; Gao J
    PeerJ Comput Sci; 2023; 9():e1561. PubMed ID: 37810362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. WaveSleepNet: An interpretable deep convolutional neural network for the continuous classification of mouse sleep and wake.
    Kam K; Rapoport DM; Parekh A; Ayappa I; Varga AW
    J Neurosci Methods; 2021 Aug; 360():109224. PubMed ID: 34052291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SleepContextNet: A temporal context network for automatic sleep staging based single-channel EEG.
    Zhao C; Li J; Guo Y
    Comput Methods Programs Biomed; 2022 Jun; 220():106806. PubMed ID: 35461126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Deep Learning Method Approach for Sleep Stage Classification with EEG Spectrogram.
    Li C; Qi Y; Ding X; Zhao J; Sang T; Lee M
    Int J Environ Res Public Health; 2022 May; 19(10):. PubMed ID: 35627856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.