These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 33875592)
1. A conserved folding nucleus sculpts the free energy landscape of bacterial and archaeal orthologs from a divergent TIM barrel family. Jain R; Muneeruddin K; Anderson J; Harms MJ; Shaffer SA; Matthews CR Proc Natl Acad Sci U S A; 2021 Apr; 118(17):. PubMed ID: 33875592 [TBL] [Abstract][Full Text] [Related]
2. Mapping the structure of folding cores in TIM barrel proteins by hydrogen exchange mass spectrometry: the roles of motif and sequence for the indole-3-glycerol phosphate synthase from Sulfolobus solfataricus. Gu Z; Zitzewitz JA; Matthews CR J Mol Biol; 2007 Apr; 368(2):582-94. PubMed ID: 17359995 [TBL] [Abstract][Full Text] [Related]
3. Structural analysis of kinetic folding intermediates for a TIM barrel protein, indole-3-glycerol phosphate synthase, by hydrogen exchange mass spectrometry and Gō model simulation. Gu Z; Rao MK; Forsyth WR; Finke JM; Matthews CR J Mol Biol; 2007 Nov; 374(2):528-46. PubMed ID: 17942114 [TBL] [Abstract][Full Text] [Related]
4. Clusters of branched aliphatic side chains serve as cores of stability in the native state of the HisF TIM barrel protein. Gangadhara BN; Laine JM; Kathuria SV; Massi F; Matthews CR J Mol Biol; 2013 Mar; 425(6):1065-81. PubMed ID: 23333740 [TBL] [Abstract][Full Text] [Related]
5. Frustration and folding of a TIM barrel protein. Halloran KT; Wang Y; Arora K; Chakravarthy S; Irving TC; Bilsel O; Brooks CL; Matthews CR Proc Natl Acad Sci U S A; 2019 Aug; 116(33):16378-16383. PubMed ID: 31346089 [TBL] [Abstract][Full Text] [Related]
6. Betaalpha-hairpin clamps brace betaalphabeta modules and can make substantive contributions to the stability of TIM barrel proteins. Yang X; Kathuria SV; Vadrevu R; Matthews CR PLoS One; 2009 Sep; 4(9):e7179. PubMed ID: 19787060 [TBL] [Abstract][Full Text] [Related]
7. NMR analysis of partially folded states and persistent structure in the alpha subunit of tryptophan synthase: implications for the equilibrium folding mechanism of a 29-kDa TIM barrel protein. Vadrevu R; Wu Y; Matthews CR J Mol Biol; 2008 Mar; 377(1):294-306. PubMed ID: 18234216 [TBL] [Abstract][Full Text] [Related]
8. Topology and sequence in the folding of a TIM barrel protein: global analysis highlights partitioning between transient off-pathway and stable on-pathway folding intermediates in the complex folding mechanism of a (betaalpha)8 barrel of unknown function from B. subtilis. Forsyth WR; Bilsel O; Gu Z; Matthews CR J Mol Biol; 2007 Sep; 372(1):236-53. PubMed ID: 17619021 [TBL] [Abstract][Full Text] [Related]
9. A tightly packed hydrophobic cluster directs the formation of an off-pathway sub-millisecond folding intermediate in the alpha subunit of tryptophan synthase, a TIM barrel protein. Wu Y; Vadrevu R; Kathuria S; Yang X; Matthews CR J Mol Biol; 2007 Mar; 366(5):1624-38. PubMed ID: 17222865 [TBL] [Abstract][Full Text] [Related]
10. Equilibrium and kinetic folding pathways of a TIM barrel with a funneled energy landscape. Finke JM; Onuchic JN Biophys J; 2005 Jul; 89(1):488-505. PubMed ID: 15833999 [TBL] [Abstract][Full Text] [Related]
11. Role of the N-terminal extension of the (betaalpha)8-barrel enzyme indole-3-glycerol phosphate synthase for its fold, stability, and catalytic activity. Schneider B; Knöchel T; Darimont B; Hennig M; Dietrich S; Babinger K; Kirschner K; Sterner R Biochemistry; 2005 Dec; 44(50):16405-12. PubMed ID: 16342933 [TBL] [Abstract][Full Text] [Related]
12. Long-range side-chain-main-chain interactions play crucial roles in stabilizing the (betaalpha)8 barrel motif of the alpha subunit of tryptophan synthase. Yang X; Vadrevu R; Wu Y; Matthews CR Protein Sci; 2007 Jul; 16(7):1398-409. PubMed ID: 17586773 [TBL] [Abstract][Full Text] [Related]
13. Conservation of the folding mechanism between designed primordial (βα)8-barrel proteins and their modern descendant. Carstensen L; Sperl JM; Bocola M; List F; Schmid FX; Sterner R J Am Chem Soc; 2012 Aug; 134(30):12786-91. PubMed ID: 22758610 [TBL] [Abstract][Full Text] [Related]
14. Folding mechanism of indole-3-glycerol phosphate synthase from Sulfolobus solfataricus: a test of the conservation of folding mechanisms hypothesis in (beta(alpha))(8) barrels. Forsyth WR; Matthews CR J Mol Biol; 2002 Jul; 320(5):1119-33. PubMed ID: 12126630 [TBL] [Abstract][Full Text] [Related]
15. Correlation of fitness landscapes from three orthologous TIM barrels originates from sequence and structure constraints. Chan YH; Venev SV; Zeldovich KB; Matthews CR Nat Commun; 2017 Mar; 8():14614. PubMed ID: 28262665 [TBL] [Abstract][Full Text] [Related]
16. Recurrent alpha beta loop structures in TIM barrel motifs show a distinct pattern of conserved structural features. Scheerlinck JP; Lasters I; Claessens M; De Maeyer M; Pio F; Delhaise P; Wodak SJ Proteins; 1992 Apr; 12(4):299-313. PubMed ID: 1374562 [TBL] [Abstract][Full Text] [Related]
17. An amino acid code for protein folding. Rumbley J; Hoang L; Mayne L; Englander SW Proc Natl Acad Sci U S A; 2001 Jan; 98(1):105-12. PubMed ID: 11136249 [TBL] [Abstract][Full Text] [Related]
18. Specific structure appears at the N terminus in the sub-millisecond folding intermediate of the alpha subunit of tryptophan synthase, a TIM barrel protein. Wu Y; Vadrevu R; Yang X; Matthews CR J Mol Biol; 2005 Aug; 351(3):445-52. PubMed ID: 16023136 [TBL] [Abstract][Full Text] [Related]
19. Diversity in αβ and βα Loop Connections in TIM Barrel Proteins: Implications for Stability and Design of the Fold. Kadumuri RV; Vadrevu R Interdiscip Sci; 2018 Dec; 10(4):805-812. PubMed ID: 29064074 [TBL] [Abstract][Full Text] [Related]