These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 33875690)
1. A correlation between grain boundary character and deformation twin nucleation mechanism in coarse-grained high-Mn austenitic steel. Hung CY; Bai Y; Shimokawa T; Tsuji N; Murayama M Sci Rep; 2021 Apr; 11(1):8468. PubMed ID: 33875690 [TBL] [Abstract][Full Text] [Related]
2. Investigating the dislocation reactions on Σ3{111} twin boundary during deformation twin nucleation process in an ultrafine-grained high-manganese steel. Hung CY; Shimokawa T; Bai Y; Tsuji N; Murayama M Sci Rep; 2021 Sep; 11(1):19298. PubMed ID: 34588568 [TBL] [Abstract][Full Text] [Related]
3. In situ observation of intergranular crack nucleation in a grain boundary controlled austenitic stainless steel. Rahimi S; Engelberg DL; Duff JA; Marrow TJ J Microsc; 2009 Mar; 233(3):423-31. PubMed ID: 19250463 [TBL] [Abstract][Full Text] [Related]
4. Dislocation nucleation governed softening and maximum strength in nano-twinned metals. Li X; Wei Y; Lu L; Lu K; Gao H Nature; 2010 Apr; 464(7290):877-80. PubMed ID: 20376146 [TBL] [Abstract][Full Text] [Related]
5. Influencing Mechanisms of Prior Cold Deformation on Mixed Grain Boundary Network in the Thermal Deformation of Ni80A Superalloy. Zhang YQ; Quan GZ; Zhao J; Xiong W Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143738 [TBL] [Abstract][Full Text] [Related]
6. The significance of phase reversion-induced nanograined/ultrafine-grained structure on the load-controlled deformation response and related mechanism in copper-bearing austenitic stainless steel. Hu CY; Somani MC; Misra RDK; Yang CG J Mech Behav Biomed Mater; 2020 Apr; 104():103666. PubMed ID: 32174424 [TBL] [Abstract][Full Text] [Related]
7. Molecular Dynamics as a Means to Investigate Grain Size and Strain Rate Effect on Plastic Deformation of 316 L Nanocrystalline Stainless-Steel. Husain A; La P; Hongzheng Y; Jie S Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32698390 [TBL] [Abstract][Full Text] [Related]
8. EBSD and TEM investigation of the hot deformation substructure characteristics of a type 316L austenitic stainless steel. Cizek P; Whiteman JA; Rainforth WM; Beynon JH J Microsc; 2004 Mar; 213(3):285-95. PubMed ID: 15009696 [TBL] [Abstract][Full Text] [Related]
9. The significance of deformation mechanisms on the fracture behavior of phase reversion-induced nanostructured austenitic stainless steel. Misra RDK; Injeti VSY; Somani MC Sci Rep; 2018 May; 8(1):7908. PubMed ID: 29784921 [TBL] [Abstract][Full Text] [Related]
10. The Effects of Grain Boundary Misorientation on the Mechanical Properties and Mechanism of Plastic Deformation of Ni/Ni Ding J; Zhang SL; Tong Q; Wang LS; Huang X; Song K; Lu SQ Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33333827 [TBL] [Abstract][Full Text] [Related]
11. In Situ Study of the Microstructural Evolution of Nickel-Based Alloy with High Proportional Twin Boundaries Obtained by High-Temperature Annealing. Zhang C; Sun M; Ya R; Li L; Cui J; Li Z; Tian W Materials (Basel); 2023 Apr; 16(7):. PubMed ID: 37049182 [TBL] [Abstract][Full Text] [Related]
12. Structure of [110] tilt grain boundaries in zirconia bicrystals. Shibata N; Yamamoto T; Ikuhara Y; Sakuma T J Electron Microsc (Tokyo); 2001; 50(6):429-33. PubMed ID: 11918406 [TBL] [Abstract][Full Text] [Related]
13. Formation of Dislocations and Stacking Faults in Embedded Individual Grains during In Situ Tensile Loading of an Austenitic Stainless Steel. Neding B; Pagan DC; Hektor J; Hedström P Materials (Basel); 2021 Oct; 14(20):. PubMed ID: 34683511 [TBL] [Abstract][Full Text] [Related]
14. In situ nanoindentation study on plasticity and work hardening in aluminium with incoherent twin boundaries. Bufford D; Liu Y; Wang J; Wang H; Zhang X Nat Commun; 2014 Sep; 5():4864. PubMed ID: 25204688 [TBL] [Abstract][Full Text] [Related]
15. On the mechanical behavior of austenitic stainless steel with nano/ultrafine grains and comparison with micrometer austenitic grains counterpart and their biological functions. Gong N; Hu C; Hu B; An B; Misra RDK J Mech Behav Biomed Mater; 2020 Jan; 101():103433. PubMed ID: 31539734 [TBL] [Abstract][Full Text] [Related]
16. Effect of Grain Size on the Plastic Deformation Behaviors of a Fe-18Mn-1.3Al-0.6C Austenitic Steel. Cui Z; He S; Tang J; Fu D; Teng J; Jiang F Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556524 [TBL] [Abstract][Full Text] [Related]
17. In Situ Study of Precipitates' Effect on Grain Deformation Behavior and Mechanical Properties of S31254 Super Austenitic Stainless Steel. Ma J; Tan H; Dong N; Gao J; Wang P; Wang Z; Han P Materials (Basel); 2024 Jun; 17(11):. PubMed ID: 38893942 [TBL] [Abstract][Full Text] [Related]
18. Effects of grain size on the microstructures and mechanical properties of 304 austenitic steel processed by torsional deformation. Gu J; Zhang L; Ni S; Song M Micron; 2018 Feb; 105():93-97. PubMed ID: 29245115 [TBL] [Abstract][Full Text] [Related]
19. Improvement in Grain Size Distribution Uniformity for Nuclear-Grade Austenitic Stainless Steel through Thermomechanical Treatment. Wang Y; Xue W; Pang Z; Zhao Z; Liu Z; Liu C; Gao F; Li W Materials (Basel); 2024 May; 17(10):. PubMed ID: 38793381 [TBL] [Abstract][Full Text] [Related]
20. Effect of Twin Boundary Motion and Dislocation-Twin Interaction on Mechanical Behavior in Fcc Metals. Mianroodi JR; Svendsen B Materials (Basel); 2020 May; 13(10):. PubMed ID: 32414053 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]