These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Potential beverage quality of three wild coffee species (Coffea brevipes, C. congensis and C. stenophylla) and consideration of their agronomic use. Bertrand B; Davis AP; Maraval I; Forestier N; Mieulet D J Sci Food Agric; 2023 May; 103(7):3602-3612. PubMed ID: 36418192 [TBL] [Abstract][Full Text] [Related]
3. Lost and Found: Davis AP; Gargiulo R; Fay MF; Sarmu D; Haggar J Front Plant Sci; 2020; 11():616. PubMed ID: 32508866 [No Abstract] [Full Text] [Related]
4. Long-term elevated air [CO2 ] strengthens photosynthetic functioning and mitigates the impact of supra-optimal temperatures in tropical Coffea arabica and C. canephora species. Rodrigues WP; Martins MQ; Fortunato AS; Rodrigues AP; Semedo JN; Simões-Costa MC; Pais IP; Leitão AE; Colwell F; Goulao L; Máguas C; Maia R; Partelli FL; Campostrini E; Scotti-Campos P; Ribeiro-Barros AI; Lidon FC; DaMatta FM; Ramalho JC Glob Chang Biol; 2016 Jan; 22(1):415-31. PubMed ID: 26363182 [TBL] [Abstract][Full Text] [Related]
5. Impact of consumption temperature on sensory properties of hot brewed coffee. Adhikari J; Chambers E; Koppel K Food Res Int; 2019 Jan; 115():95-104. PubMed ID: 30599987 [TBL] [Abstract][Full Text] [Related]
6. Physiological and Agronomic Performance of the Coffee Crop in the Context of Climate Change and Global Warming: A Review. DaMatta FM; Avila RT; Cardoso AA; Martins SCV; Ramalho JC J Agric Food Chem; 2018 May; 66(21):5264-5274. PubMed ID: 29517900 [TBL] [Abstract][Full Text] [Related]
7. Enhancing Robusta coffee aroma by modifying flavour precursors in the green coffee bean. Liu C; Yang N; Yang Q; Ayed C; Linforth R; Fisk ID Food Chem; 2019 May; 281():8-17. PubMed ID: 30658769 [TBL] [Abstract][Full Text] [Related]
8. Climatic factors directly impact the volatile organic compound fingerprint in green Arabica coffee bean as well as coffee beverage quality. Bertrand B; Boulanger R; Dussert S; Ribeyre F; Berthiot L; Descroix F; Joët T Food Chem; 2012 Dec; 135(4):2575-83. PubMed ID: 22980845 [TBL] [Abstract][Full Text] [Related]
9. Climate risks and vulnerabilities of the Arabica coffee in Brazil under current and future climates considering new CMIP6 models. Dias CG; Martins FB; Martins MA Sci Total Environ; 2024 Jan; 907():167753. PubMed ID: 37832692 [TBL] [Abstract][Full Text] [Related]
10. Impact of roasting time on the sensory profile of arabica and robusta coffee. Bicho NC; Leitão AE; Ramalho JC; de Alvarenga NB; Lidon FC Ecol Food Nutr; 2013; 52(2):163-77. PubMed ID: 23445394 [TBL] [Abstract][Full Text] [Related]
11. Mozambioside Is an Arabica-Specific Bitter-Tasting Furokaurane Glucoside in Coffee Beans. Lang R; Klade S; Beusch A; Dunkel A; Hofmann T J Agric Food Chem; 2015 Dec; 63(48):10492-9. PubMed ID: 26585544 [TBL] [Abstract][Full Text] [Related]
12. Climate-based statistical regression models for crop yield forecasting of coffee in humid tropical Kerala, India. Jayakumar M; Rajavel M; Surendran U Int J Biometeorol; 2016 Dec; 60(12):1943-1952. PubMed ID: 27378280 [TBL] [Abstract][Full Text] [Related]
13. Effects of brewing conditions and coffee species on the physicochemical characteristics, preference and dynamics of sensory attributes perception in cold brews. Portela CDS; Almeida IF; Reis TADD; Hickmann BRB; Benassi MT Food Res Int; 2022 Jan; 151():110860. PubMed ID: 34980396 [TBL] [Abstract][Full Text] [Related]
14. Least concern to endangered: Applying climate change projections profoundly influences the extinction risk assessment for wild Arabica coffee. Moat J; Gole TW; Davis AP Glob Chang Biol; 2019 Feb; 25(2):390-403. PubMed ID: 30650240 [TBL] [Abstract][Full Text] [Related]
15. Similarities and differences in sensory properties of high quality Arabica coffee in a small region of Colombia. di Donfrancesco B; Gutierrez Guzman N; Chambers E Food Res Int; 2019 Feb; 116():645-651. PubMed ID: 30716991 [TBL] [Abstract][Full Text] [Related]
16. Temperature contributes to host specialization of coffee wilt disease (Fusarium xylarioides) on arabica and robusta coffee crops. Zhang X; Peck LD; Flood J; Ryan MJ; Barraclough TG Sci Rep; 2023 Jun; 13(1):9327. PubMed ID: 37291178 [TBL] [Abstract][Full Text] [Related]
17. Heat-induced formation of N,N-dimethylpiperidinium (mepiquat) in Arabica and Robusta coffee. Li X; Zhang X; Tan L; Yan H; Yuan Y J Food Sci; 2020 Sep; 85(9):2754-2761. PubMed ID: 32794260 [TBL] [Abstract][Full Text] [Related]
18. The Rhizosphere Microbiomes of Five Species of Coffee Trees. de Sousa LP; Guerreiro-Filho O; Mondego JMC Microbiol Spectr; 2022 Apr; 10(2):e0044422. PubMed ID: 35289671 [TBL] [Abstract][Full Text] [Related]
19. Homostachydrine (pipecolic acid betaine) as authentication marker of roasted blends of Coffea arabica and Coffea canephora (Robusta) beans. Servillo L; Giovane A; Casale R; Cautela D; D'Onofrio N; Balestrieri ML; Castaldo D Food Chem; 2016 Aug; 205():52-7. PubMed ID: 27006213 [TBL] [Abstract][Full Text] [Related]
20. Not so robust: Robusta coffee production is highly sensitive to temperature. Kath J; Byrareddy VM; Craparo A; Nguyen-Huy T; Mushtaq S; Cao L; Bossolasco L Glob Chang Biol; 2020 Jun; 26(6):3677-3688. PubMed ID: 32223007 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]