These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
295 related articles for article (PubMed ID: 33876191)
1. Deep learning of gene relationships from single cell time-course expression data. Yuan Y; Bar-Joseph Z Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33876191 [TBL] [Abstract][Full Text] [Related]
2. DeepGRNCS: deep learning-based framework for jointly inferring gene regulatory networks across cell subpopulations. Lei Y; Huang XT; Guo X; Hang Katie Chan K; Gao L Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38980373 [TBL] [Abstract][Full Text] [Related]
3. Deep embedded clustering with multiple objectives on scRNA-seq data. Li X; Zhang S; Wong KC Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33822877 [TBL] [Abstract][Full Text] [Related]
4. SFINN: inferring gene regulatory network from single-cell and spatial transcriptomic data with shared factor neighborhood and integrated neural network. Wang Y; Zhou F; Guan J Bioinformatics; 2024 Jul; 40(7):. PubMed ID: 38950180 [TBL] [Abstract][Full Text] [Related]
5. A hybrid deep clustering approach for robust cell type profiling using single-cell RNA-seq data. Srinivasan S; Leshchyk A; Johnson NT; Korkin D RNA; 2020 Oct; 26(10):1303-1319. PubMed ID: 32532794 [TBL] [Abstract][Full Text] [Related]
6. Deep learning tackles single-cell analysis-a survey of deep learning for scRNA-seq analysis. Flores M; Liu Z; Zhang T; Hasib MM; Chiu YC; Ye Z; Paniagua K; Jo S; Zhang J; Gao SJ; Jin YF; Chen Y; Huang Y Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34929734 [TBL] [Abstract][Full Text] [Related]
8. Inferring gene regulatory networks from single-cell transcriptomics based on graph embedding. Gan Y; Yu J; Xu G; Yan C; Zou G Bioinformatics; 2024 May; 40(5):. PubMed ID: 38810116 [TBL] [Abstract][Full Text] [Related]
9. dynDeepDRIM: a dynamic deep learning model to infer direct regulatory interactions using time-course single-cell gene expression data. Xu Y; Chen J; Lyu A; Cheung WK; Zhang L Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36168811 [TBL] [Abstract][Full Text] [Related]
10. GRNUlar: A Deep Learning Framework for Recovering Single-Cell Gene Regulatory Networks. Shrivastava H; Zhang X; Song L; Aluru S J Comput Biol; 2022 Jan; 29(1):27-44. PubMed ID: 35050715 [TBL] [Abstract][Full Text] [Related]
12. Deep generative model embedding of single-cell RNA-Seq profiles on hyperspheres and hyperbolic spaces. Ding J; Regev A Nat Commun; 2021 May; 12(1):2554. PubMed ID: 33953202 [TBL] [Abstract][Full Text] [Related]
13. Identifying gene expression programs in single-cell RNA-seq data using linear correlation explanation. Nussbaum YI; Hossain KSMT; Kaifi J; Warren WC; Shyu CR; Mitchem JB J Biomed Inform; 2024 Jun; 154():104644. PubMed ID: 38631462 [TBL] [Abstract][Full Text] [Related]
14. scGNN is a novel graph neural network framework for single-cell RNA-Seq analyses. Wang J; Ma A; Chang Y; Gong J; Jiang Y; Qi R; Wang C; Fu H; Ma Q; Xu D Nat Commun; 2021 Mar; 12(1):1882. PubMed ID: 33767197 [TBL] [Abstract][Full Text] [Related]
15. scCompressSA: dual-channel self-attention based deep autoencoder model for single-cell clustering by compressing gene-gene interactions. Zhang W; Yu R; Xu Z; Li J; Gao W; Jiang M; Dai Q BMC Genomics; 2024 Apr; 25(1):423. PubMed ID: 38684946 [TBL] [Abstract][Full Text] [Related]
16. An active learning approach for clustering single-cell RNA-seq data. Lin X; Liu H; Wei Z; Roy SB; Gao N Lab Invest; 2022 Mar; 102(3):227-235. PubMed ID: 34244616 [TBL] [Abstract][Full Text] [Related]
20. Pathway-Based Single-Cell RNA-Seq Classification, Clustering, and Construction of Gene-Gene Interactions Networks Using Random Forests. Wang H; Sham P; Tong T; Pang H IEEE J Biomed Health Inform; 2020 Jun; 24(6):1814-1822. PubMed ID: 31581101 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]