These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 33876514)
1. A Promising NIR-II Fluorescent Sensor for Peptide-Mediated Long-Term Monitoring of Kidney Dysfunction. Chen Y; Pei P; Lei Z; Zhang X; Yin D; Zhang F Angew Chem Int Ed Engl; 2021 Jul; 60(29):15809-15815. PubMed ID: 33876514 [TBL] [Abstract][Full Text] [Related]
2. Multifunctional materials conjugated with near-infrared fluorescent organic molecules and their targeted cancer bioimaging potentialities. Asgher M; Qamar SA; Sadaf M; Iqbal HMN Biomed Phys Eng Express; 2020 Jan; 6(1):012003. PubMed ID: 33438589 [TBL] [Abstract][Full Text] [Related]
3. A Bright, Renal-Clearable NIR-II Brush Macromolecular Probe with Long Blood Circulation Time for Kidney Disease Bioimaging. Yao C; Chen Y; Zhao M; Wang S; Wu B; Yang Y; Yin D; Yu P; Zhang H; Zhang F Angew Chem Int Ed Engl; 2022 Jan; 61(5):e202114273. PubMed ID: 34850517 [TBL] [Abstract][Full Text] [Related]
4. Molecular Cancer Imaging in the Second Near-Infrared Window Using a Renal-Excreted NIR-II Fluorophore-Peptide Probe. Wang W; Ma Z; Zhu S; Wan H; Yue J; Ma H; Ma R; Yang Q; Wang Z; Li Q; Qian Y; Yue C; Wang Y; Fan L; Zhong Y; Zhou Y; Gao H; Ruan J; Hu Z; Liang Y; Dai H Adv Mater; 2018 May; 30(22):e1800106. PubMed ID: 29682821 [TBL] [Abstract][Full Text] [Related]
5. Renal-clearable Molecular Semiconductor for Second Near-Infrared Fluorescence Imaging of Kidney Dysfunction. Huang J; Xie C; Zhang X; Jiang Y; Li J; Fan Q; Pu K Angew Chem Int Ed Engl; 2019 Oct; 58(42):15120-15127. PubMed ID: 31452298 [TBL] [Abstract][Full Text] [Related]
6. Promoting the Near-Infrared-II Fluorescence of Diketopyrrolopyrrole-Based Dye for In Vivo Imaging via Donor Engineering. Yuan T; Xia Q; Wang Z; Li X; Lin H; Mei J; Qian J; Hua J ACS Appl Mater Interfaces; 2024 Jan; 16(4):4478-4492. PubMed ID: 38241092 [TBL] [Abstract][Full Text] [Related]
7. The multifaceted roles of peptides in "always-on" near-infrared fluorescent probes for tumor imaging. Xu H; Wang H; Xu Z; Bian S; Xu Z; Zhang H Bioorg Chem; 2022 Dec; 129():106182. PubMed ID: 36341739 [TBL] [Abstract][Full Text] [Related]
8. PEGylation Regulates Self-Assembled Small-Molecule Dye-Based Probes from Single Molecule to Nanoparticle Size for Multifunctional NIR-II Bioimaging. Ding F; Li C; Xu Y; Li J; Li H; Yang G; Sun Y Adv Healthc Mater; 2018 Dec; 7(23):e1800973. PubMed ID: 30358138 [TBL] [Abstract][Full Text] [Related]
9. NIR-II Fluorescent Probes for Fluorescence-Imaging-Guided Tumor Surgery. Ullah Z; Roy S; Gu J; Ko Soe S; Jin J; Guo B Biosensors (Basel); 2024 May; 14(6):. PubMed ID: 38920586 [TBL] [Abstract][Full Text] [Related]
10. Engineering of cyanine-based nanoplatform with tunable response toward reactive species for ratiometric NIR-II fluorescent imaging in mice. Ma Y; Liu L; Ye Z; Xu L; Li Y; Liu S; Song G; Zhang XB Sci Bull (Beijing); 2023 Oct; 68(20):2382-2390. PubMed ID: 37679256 [TBL] [Abstract][Full Text] [Related]
11. Novel small-molecule fluorophores for in vivo NIR-IIa and NIR-IIb imaging. Li Q; Ding Q; Li Y; Zeng X; Liu Y; Lu S; Zhou H; Wang X; Wu J; Meng X; Deng Z; Xiao Y Chem Commun (Camb); 2020 Mar; 56(22):3289-3292. PubMed ID: 32073036 [TBL] [Abstract][Full Text] [Related]
12. Near-infrared molecular probes for in vivo imaging. Zhang X; Bloch S; Akers W; Achilefu S Curr Protoc Cytom; 2012 Apr; Chapter 12():Unit12.27. PubMed ID: 22470154 [TBL] [Abstract][Full Text] [Related]
13. Second near-infrared emissive lanthanide complex for fast renal-clearable in vivo optical bioimaging and tiny tumor detection. Li Y; Li X; Xue Z; Jiang M; Zeng S; Hao J Biomaterials; 2018 Jul; 169():35-44. PubMed ID: 29631166 [TBL] [Abstract][Full Text] [Related]
14. Fast clearing RGD-based near-infrared fluorescent probes for in vivo tumor diagnosis. Cao J; Wan S; Tian J; Li S; Deng D; Qian Z; Gu Y Contrast Media Mol Imaging; 2012; 7(4):390-402. PubMed ID: 22649045 [TBL] [Abstract][Full Text] [Related]
15. A review of NIR dyes in cancer targeting and imaging. Luo S; Zhang E; Su Y; Cheng T; Shi C Biomaterials; 2011 Oct; 32(29):7127-38. PubMed ID: 21724249 [TBL] [Abstract][Full Text] [Related]
16. A General Strategy for Development of Activatable NIR-II Fluorescent Probes for In Vivo High-Contrast Bioimaging. Ren TB; Wang ZY; Xiang Z; Lu P; Lai HH; Yuan L; Zhang XB; Tan W Angew Chem Int Ed Engl; 2021 Jan; 60(2):800-805. PubMed ID: 32918358 [TBL] [Abstract][Full Text] [Related]
17. Nanoparticles for In Vivo Lifetime Multiplexed Imaging. Ximendes E; Martín Rodríguez E; Ortgies DH; Tan M; Chen G; Del Rosal B Methods Mol Biol; 2021; 2350():239-251. PubMed ID: 34331289 [TBL] [Abstract][Full Text] [Related]
18. In vivo fluorescence imaging of nanocarriers in near-infrared window II based on aggregation-caused quenching. Zhang Z; Liu C; Lu Y; Zhao W; Zhu Q; He H; Chen Z; Wu W J Nanobiotechnology; 2024 Aug; 22(1):488. PubMed ID: 39143492 [TBL] [Abstract][Full Text] [Related]
19. Activatable Second Near-Infrared Fluorescent Probes: A New Accurate Diagnosis Strategy for Diseases. Li D; Pan J; Xu S; Fu S; Chu C; Liu G Biosensors (Basel); 2021 Nov; 11(11):. PubMed ID: 34821652 [TBL] [Abstract][Full Text] [Related]
20. Fabrication of Red Blood Cell-Based Multimodal Theranostic Probes for Second Near-Infrared Window Fluorescence Imaging-Guided Tumor Surgery and Photodynamic Therapy. Wang P; Wang X; Luo Q; Li Y; Lin X; Fan L; Zhang Y; Liu J; Liu X Theranostics; 2019; 9(2):369-380. PubMed ID: 30809280 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]