BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 33876643)

  • 1. Paper Information Recording and Security Protection Using Invisible Ink and Artificial Intelligence.
    Yuan Y; Shao J; Zhong M; Wang H; Zhang C; Wei J; Li K; Xu J; Zhao W
    ACS Appl Mater Interfaces; 2021 Apr; 13(16):19443-19449. PubMed ID: 33876643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Invisible Security Ink Based on Water-Soluble Graphitic Carbon Nitride Quantum Dots.
    Song Z; Lin T; Lin L; Lin S; Fu F; Wang X; Guo L
    Angew Chem Int Ed Engl; 2016 Feb; 55(8):2773-7. PubMed ID: 26797811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water-Soluble and Low-Toxic Ionic Polymer Dots as Invisible Security Ink for MultiStage Information Encryption.
    Chen D; Cui C; Tong N; Zhou H; Wang X; Wang R
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):1480-1486. PubMed ID: 30525393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solvent stimuli-responsive off-on fluorescence induced by synergistic effect of doping and phase transformation for Te
    Li X; Wang Z; Sun H; Bai F; Xu S; Wang C
    J Colloid Interface Sci; 2023 Mar; 633():808-816. PubMed ID: 36493745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Secret Paper with Vinegar as an Invisible Security Ink and Fire as a Decryption Key for Information Protection.
    Chen FF; Zhu YJ; Zhang QQ; Yang RL; Qin DD; Xiong ZC
    Chemistry; 2019 Aug; 25(46):10918-10925. PubMed ID: 31211454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Luminescent nanohybrid of ZnO quantum dot and cellulose nanocrystal as anti-counterfeiting ink.
    Ngoensawat U; Parnsubsakul A; Kaitphaiboonwet S; Wutikhun T; Sapcharoenkun C; Pienpinijtham P; Ekgasit S
    Carbohydr Polym; 2021 Jun; 262():117864. PubMed ID: 33838790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Paper without a Trail: Time-Dependent Encryption using Pillar[5]arene-Based Host-Guest Invisible Ink.
    Ju H; Zhu CN; Wang H; Page ZA; Wu ZL; Sessler JL; Huang F
    Adv Mater; 2022 Feb; 34(6):e2108163. PubMed ID: 34802162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Invisible Ink Marking in ECL Membrane Assays.
    Kurien BT
    Methods Mol Biol; 2015; 1314():375-82. PubMed ID: 26139285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light-Responsive Luminescent Materials for Information Encryption Against Burst Force Attack.
    Zhou Q; Qiu X; Su X; Liu Q; Wen Y; Xu M; Li F
    Small; 2021 May; 17(20):e2100377. PubMed ID: 33870628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strict Twice Iterative Optimization Strategy to Synthesize Ultrabright Fluorescent Carbon Dots for UV and pH Dual-Encryption Fluorescent Ink.
    Xiang J; Li R; Long X; Wu S; Wang J; Wang Z
    ACS Omega; 2022 Aug; 7(34):29952-29958. PubMed ID: 36061698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Invisible ink mark detection in the visible spectrum using absorption difference.
    Lee J; Kong SG; Kang TY; Kim B; Jeon OY
    Forensic Sci Int; 2014 Mar; 236():77-83. PubMed ID: 24529777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stimuli-Responsive Inks Based on Perovskite Quantum Dots for Advanced Full-Color Information Encryption and Decryption.
    Sun C; Su S; Gao Z; Liu H; Wu H; Shen X; Bi W
    ACS Appl Mater Interfaces; 2019 Feb; 11(8):8210-8216. PubMed ID: 30719905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photorewriting, Time-Resolved Encryption, and Unclonable Anticounterfeiting with Artificial Intelligence Authentication via a Reversible Photoswitchable System.
    Guo J; Gao Y; Pan M; Li X; Kong F; Wu M; Zhang L; Cheng Z; Zhao R; Ma H
    ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38682804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene quantum dots as full-color and stimulus responsive fluorescence ink for information encryption.
    Zhao J; Zheng Y; Pang Y; Chen J; Zhang Z; Xi F; Chen P
    J Colloid Interface Sci; 2020 Nov; 579():307-314. PubMed ID: 32599475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stimuli-Responsive Naphthalene Diimide as Invisible Ink: A Rewritable Fluorescent Platform for Anti-Counterfeiting.
    Kalita A; Malik AH; Sarma NS
    Chem Asian J; 2020 Apr; 15(7):1074-1080. PubMed ID: 32003508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Smart Responsive Luminescent Aptamer-Functionalized Covalent Organic Framework Hydrogel for High-Resolution Visualization and Security Protection of Latent Fingerprints.
    Hai J; Wang H; Sun P; Li T; Lu S; Zhao Y; Wang B
    ACS Appl Mater Interfaces; 2019 Nov; 11(47):44664-44672. PubMed ID: 31692318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescent Polystyrene Microbeads as Invisible Security Ink and Optical Vapor Sensor for 4-Nitrotoluene.
    Sonawane SL; Asha SK
    ACS Appl Mater Interfaces; 2016 Apr; 8(16):10590-9. PubMed ID: 27049845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of photoswitchable nanoparticles with cellulosic materials for anticounterfeiting and authentication security documents.
    Abdollahi A; Herizchi A; Roghani-Mamaqani H; Alidaei-Sharif H
    Carbohydr Polym; 2020 Feb; 230():115603. PubMed ID: 31887950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conversion of invisible metal-organic frameworks to luminescent perovskite nanocrystals for confidential information encryption and decryption.
    Zhang C; Wang B; Li W; Huang S; Kong L; Li Z; Li L
    Nat Commun; 2017 Oct; 8(1):1138. PubMed ID: 29089491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Encryption and authentication of security patterns by ecofriendly multi-color photoluminescent inks containing oxazolidine-functionalized nanoparticles.
    Abdollahi A; Roghani-Mamaqani H; Salami-Kalajahi M; Razavi B
    J Colloid Interface Sci; 2020 Nov; 580():192-210. PubMed ID: 32683117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.