These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 33876664)

  • 1. Epigenomics in COVID-19; the link between DNA methylation, histone modifications and SARS-CoV-2 infection.
    Shirvaliloo M
    Epigenomics; 2021 May; 13(10):745-750. PubMed ID: 33876664
    [No Abstract]   [Full Text] [Related]  

  • 2. Genome-wide DNA methylation profiling of peripheral blood reveals an epigenetic signature associated with severe COVID-19.
    Corley MJ; Pang APS; Dody K; Mudd PA; Patterson BK; Seethamraju H; Bram Y; Peluso MJ; Torres L; Iyer NS; Premeaux TA; Yeung ST; Chandar V; Borczuk A; Schwartz RE; Henrich TJ; Deeks SG; Sacha JB; Ndhlovu LC
    J Leukoc Biol; 2021 Jul; 110(1):21-26. PubMed ID: 33464637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An immune epigenetic insight to COVID-19 infection.
    Jit BP; Qazi S; Arya R; Srivastava A; Gupta N; Sharma A
    Epigenomics; 2021 Mar; 13(6):465-480. PubMed ID: 33685230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Germline Genetic Variants of Viral Entry and Innate Immunity May Influence Susceptibility to SARS-CoV-2 Infection: Toward a Polygenic Risk Score for Risk Stratification.
    Grolmusz VK; Bozsik A; Papp J; Patócs A
    Front Immunol; 2021; 12():653489. PubMed ID: 33763088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epigenetic mechanisms influencing COVID-19.
    Sen R; Garbati M; Bryant K; Lu Y
    Genome; 2021 Apr; 64(4):372-385. PubMed ID: 33395363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An epigenetic signature to fight COVID-19.
    Herbein G
    EBioMedicine; 2021 May; 67():103385. PubMed ID: 33993054
    [No Abstract]   [Full Text] [Related]  

  • 7. Understanding the role of telomere attrition and epigenetic signatures in COVID-19 severity.
    Mahmoodpoor A; Sanaie S; Roudbari F; Sabzevari T; Sohrabifar N; Kazeminasab S
    Gene; 2022 Feb; 811():146069. PubMed ID: 34848322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Risk-focused differences in molecular processes implicated in SARS-CoV-2 infection: corollaries in DNA methylation and gene expression.
    Konwar C; Asiimwe R; Inkster AM; Merrill SM; Negri GL; Aristizabal MJ; Rider CF; MacIsaac JL; Carlsten C; Kobor MS
    Epigenetics Chromatin; 2021 Dec; 14(1):54. PubMed ID: 34895312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomic, epigenomic, and immune subtype analysis of CTSL/B and SARS-CoV-2 receptor ACE2 in pan-cancer.
    Li H; Xie L; Chen L; Zhang L; Han Y; Yan Z; Guo X
    Aging (Albany NY); 2020 Nov; 12(22):22370-22389. PubMed ID: 33231569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SARS-CoV-2: Understanding the Transcriptional Regulation of ACE2 and TMPRSS2 and the Role of Single Nucleotide Polymorphism (SNP) at Codon 72 of p53 in the Innate Immune Response against Virus Infection.
    Lodhi N; Singh R; Rajput SP; Saquib Q
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. COVID-19: Molecular and Cellular Response.
    Alipoor SD; Mortaz E; Jamaati H; Tabarsi P; Bayram H; Varahram M; Adcock IM
    Front Cell Infect Microbiol; 2021; 11():563085. PubMed ID: 33643932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. COVID-19-from mucosal immunology to IBD patients.
    Weidinger C; Hegazy AN; Glauben R; Siegmund B
    Mucosal Immunol; 2021 May; 14(3):566-573. PubMed ID: 33608656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. COVID-19 Is a Multi-Organ Aggressor: Epigenetic and Clinical Marks.
    Kgatle MM; Lawal IO; Mashabela G; Boshomane TMG; Koatale PC; Mahasha PW; Ndlovu H; Vorster M; Rodrigues HG; Zeevaart JR; Gordon S; Moura-Alves P; Sathekge MM
    Front Immunol; 2021; 12():752380. PubMed ID: 34691068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Haunting innate immune memories of COVID-19.
    Sawitzki B
    Cell; 2023 Aug; 186(18):3753-3755. PubMed ID: 37657416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA methylation architecture of the ACE2 gene in nasal cells of children.
    Cardenas A; Rifas-Shiman SL; Sordillo JE; DeMeo DL; Baccarelli AA; Hivert MF; Gold DR; Oken E
    Sci Rep; 2021 Mar; 11(1):7107. PubMed ID: 33782449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SARS-CoV-2 multifaceted interaction with the human host. Part II: Innate immunity response, immunopathology, and epigenetics.
    Beacon TH; Su RC; Lakowski TM; Delcuve GP; Davie JR
    IUBMB Life; 2020 Nov; 72(11):2331-2354. PubMed ID: 32936531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Age and sex effects on DNA methylation sites linked to genes implicated in severe COVID-19 and SARS-CoV-2 host cell entry.
    Bohlin J; Page CM; Lee Y; Pettersson JH; Jugessur A; Magnus P; Håberg SE
    PLoS One; 2022; 17(6):e0269105. PubMed ID: 35679253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SARS-CoV 2; Possible alternative virus receptors and pathophysiological determinants.
    Pruimboom L
    Med Hypotheses; 2021 Jan; 146():110368. PubMed ID: 33189453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic and epigenetic factors associated with increased severity of Covid-19.
    Yildirim Z; Sahin OS; Yazar S; Bozok Cetintas V
    Cell Biol Int; 2021 Jun; 45(6):1158-1174. PubMed ID: 33590936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pathogenesis of the inflammatory bowel disease in context of SARS-COV-2 infection.
    Dvornikova KA; Bystrova EY; Churilov LP; Lerner A
    Mol Biol Rep; 2021 Jul; 48(7):5745-5758. PubMed ID: 34296352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.