These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 33876758)

  • 1. Declining greenness in Arctic-boreal lakes.
    Kuhn C; Butman D
    Proc Natl Acad Sci U S A; 2021 Apr; 118(15):. PubMed ID: 33876758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Humic substances-part 7: the biogeochemistry of dissolved organic carbon and its interactions with climate change.
    Porcal P; Koprivnjak JF; Molot LA; Dillon PJ
    Environ Sci Pollut Res Int; 2009 Sep; 16(6):714-26. PubMed ID: 19462191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CO
    Hastie A; Lauerwald R; Weyhenmeyer G; Sobek S; Verpoorter C; Regnier P
    Glob Chang Biol; 2018 Feb; 24(2):711-728. PubMed ID: 28892578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large difference in carbon emission – burial balances between boreal and arctic lakes.
    Lundin EJ; Klaminder J; Bastviken D; Olid C; Hansson SV; Karlsson J
    Sci Rep; 2015 Sep; 5():14248. PubMed ID: 26370519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variations in surface area and biogeochemistry of subarctic-arctic lakes established through satellite and in-situ observations: An overview of published research from the past 30 years.
    Zhao R; Shang Y; Jacinthe PA; Li S; Liu G; Wen Z; Wang Z; Yang Q; Fang C; Song K
    Sci Total Environ; 2024 Jun; 931():172797. PubMed ID: 38679084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporal trends, lake-to-lake variation, and climate effects on Arctic char (Salvelinus alpinus) mercury concentrations from six High Arctic lakes in Nunavut, Canada.
    Hudelson KE; Muir DCG; Drevnick PE; Köck G; Iqaluk D; Wang X; Kirk JL; Barst BD; Grgicak-Mannion A; Shearon R; Fisk AT
    Sci Total Environ; 2019 Aug; 678():801-812. PubMed ID: 31085496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantifying recent ecological changes in remote lakes of North America and Greenland using sediment diatom assemblages.
    Hobbs WO; Telford RJ; Birks HJ; Saros JE; Hazewinkel RR; Perren BB; Saulnier-Talbot E; Wolfe AP
    PLoS One; 2010 Apr; 5(4):e10026. PubMed ID: 20368811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drivers and variability of CO
    Allesson L; Valiente N; Dörsch P; Andersen T; Eiler A; Hessen DO
    Sci Rep; 2022 Nov; 12(1):18989. PubMed ID: 36348044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Browning affects pelagic productivity in northern lakes by surface water warming and carbon fertilization.
    Puts IC; Ask J; Deininger A; Jonsson A; Karlsson J; Bergström AK
    Glob Chang Biol; 2023 Jan; 29(2):375-390. PubMed ID: 36197126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trends in historical mercury deposition inferred from lake sediment cores across a climate gradient in the Canadian High Arctic.
    Korosi JB; Griffiths K; Smol JP; Blais JM
    Environ Pollut; 2018 Oct; 241():459-467. PubMed ID: 29870948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inland waters and their role in the carbon cycle of Alaska.
    Stackpoole SM; Butman DE; Clow DW; Verdin KL; Gaglioti BV; Genet H; Striegl RG
    Ecol Appl; 2017 Jul; 27(5):1403-1420. PubMed ID: 28376236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vegetation greening in the Canadian Arctic related to decadal warming.
    Jia GJ; Epstein HE; Walker DA
    J Environ Monit; 2009 Dec; 11(12):2231-8. PubMed ID: 20024021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying historical and future potential lake drainage events on the western Arctic coastal plain of Alaska.
    Jones BM; Arp CD; Grosse G; Nitze I; Lara MJ; Whitman MS; Farquharson LM; Kanevskiy M; Parsekian AD; Breen AL; Ohara N; Rangel RC; Hinkel KM
    Permafr Periglac Process; 2020; 31(1):110-127. PubMed ID: 32194312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological and ecological effects of increasing temperature on fish production in lakes of Arctic Alaska.
    Carey MP; Zimmerman CE
    Ecol Evol; 2014 May; 4(10):1981-93. PubMed ID: 24963391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global warming triggers the loss of a key Arctic refugium.
    Rühland KM; Paterson AM; Keller W; Michelutti N; Smol JP
    Proc Biol Sci; 2013 Dec; 280(1772):20131887. PubMed ID: 24107529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Warming and disturbances affect Arctic-boreal vegetation resilience across northwestern North America.
    Zhang Y; Wang JA; Berner LT; Goetz SJ; Zhao K; Liu Y
    Nat Ecol Evol; 2024 Oct; ():. PubMed ID: 39379553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extensive land cover change across Arctic-Boreal Northwestern North America from disturbance and climate forcing.
    Wang JA; Sulla-Menashe D; Woodcock CE; Sonnentag O; Keeling RF; Friedl MA
    Glob Chang Biol; 2020 Feb; 26(2):807-822. PubMed ID: 31437337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduced arctic tundra productivity linked with landform and climate change interactions.
    Lara MJ; Nitze I; Grosse G; Martin P; McGuire AD
    Sci Rep; 2018 Feb; 8(1):2345. PubMed ID: 29402988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Persistent organic pollutants and metals in the freshwater biota of the Canadian Subarctic and Arctic: an overview.
    Evans MS; Muir D; Lockhart WL; Stern G; Ryan M; Roach P
    Sci Total Environ; 2005 Dec; 351-352():94-147. PubMed ID: 16225909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large-scale patterns in summer diffusive CH4 fluxes across boreal lakes, and contribution to diffusive C emissions.
    Rasilo T; Prairie YT; Del Giorgio PA
    Glob Chang Biol; 2015 Mar; 21(3):1124-39. PubMed ID: 25220765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.