These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 33876797)

  • 21. Wideband and polarization-insensitive metamaterial absorber with loading lumped resistors.
    Xiong H; Bin Long T; Shi T; Xuan Jiang B; Tao Zhang J
    Appl Opt; 2020 Aug; 59(23):7092-7098. PubMed ID: 32788804
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Design of Metamaterial Absorber using Eight-Resistive-Arm Cell for Simultaneous Broadband and Wide-Incidence-Angle Absorption.
    Nguyen TT; Lim S
    Sci Rep; 2018 Apr; 8(1):6633. PubMed ID: 29700385
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Polarization-Insensitive and Wide-Angle Terahertz Absorber with Ring-Porous Patterned Graphene Metasurface.
    Shen H; Liu F; Liu C; Zeng D; Guo B; Wei Z; Wang F; Tan C; Huang X; Meng H
    Nanomaterials (Basel); 2020 Jul; 10(7):. PubMed ID: 32707727
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Low-frequency broadband multilayer microwave metamaterial absorber based on resistive frequency selective surfaces.
    Lan HW; Li ZM; Weng XL; Qi L; Li K; Zhou ZR; Wu XY; Bi M
    Appl Opt; 2023 Feb; 62(4):1096-1102. PubMed ID: 36821169
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Angle- and Polarization-Insensitive Metamaterial Absorber using Via Array.
    Lim D; Lee D; Lim S
    Sci Rep; 2016 Dec; 6():39686. PubMed ID: 28000770
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A tunable wide-angle narrowband perfect absorber based on an optical cavity containing hyperbolic metamaterials.
    Xie Z; Zhu X; Deng Y; Chen Y
    Phys Chem Chem Phys; 2023 Nov; 25(42):29358-29364. PubMed ID: 37877334
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dumbbell shaped structure loaded modified circular ring resonator based perfect metamaterial absorber for S, X and Ku band microwave sensing applications.
    Rabbani MG; Islam MT; Moniruzzaman M; Alamri S; Rahman AAM; Moubark AM; Islam MS; Soliman MS
    Sci Rep; 2024 Mar; 14(1):5588. PubMed ID: 38454118
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultra-light planar meta-absorber with wideband and full-polarization properties.
    Du Z; Liang J; Cai T; Wang X; Zhang Q; Deng T; Wu B; Mao R; Wang D
    Opt Express; 2021 Mar; 29(5):6434-6444. PubMed ID: 33726164
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optically transparent metasurface Salisbury screen with wideband microwave absorption.
    Li T; Chen K; Ding G; Zhao J; Jiang T; Feng Y
    Opt Express; 2018 Dec; 26(26):34384-34395. PubMed ID: 30650861
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Wide Angle of Incidence-Insensitive Polarization-Independent THz Metamaterial Absorber for Both TE and TM Mode Based on Plasmon Hybridizations.
    Huang XT; Lu CH; Rong CC; Wang SM; Liu MH
    Materials (Basel); 2018 Apr; 11(5):. PubMed ID: 29693645
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Design and optimization of broadband metamaterial absorber based on manganese for visible applications.
    Sayed SI; Mahmoud KR; Mubarak RI
    Sci Rep; 2023 Jul; 13(1):11937. PubMed ID: 37488131
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tunable broadband all-silicon terahertz absorber based on a simple metamaterial structure.
    Lang T; Shen T; Wang G; Shen C
    Appl Opt; 2020 Jul; 59(21):6265-6270. PubMed ID: 32749287
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reconfigurable honeycomb metamaterial absorber having incident angular stability.
    Shabanpour J; Beyraghi S; Oraizi H
    Sci Rep; 2020 Sep; 10(1):14920. PubMed ID: 32913238
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tunable ultra-broadband terahertz metamaterial absorber based on vanadium dioxide strips.
    Gevorgyan L; Haroyan H; Parsamyan H; Nerkararyan K
    RSC Adv; 2023 Apr; 13(18):11948-11958. PubMed ID: 37077259
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Polarization-independent wide-angle triple-band metamaterial absorber.
    Shen X; Cui TJ; Zhao J; Ma HF; Jiang WX; Li H
    Opt Express; 2011 May; 19(10):9401-7. PubMed ID: 21643197
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Switchable and tunable terahertz metamaterial absorber with broadband and multi-band absorption.
    Zhu H; Zhang Y; Ye L; Li Y; Xu Y; Xu R
    Opt Express; 2020 Dec; 28(26):38626-38637. PubMed ID: 33379429
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Wide-angle metamaterial absorber with highly insensitive absorption for TE and TM modes.
    Amiri M; Tofigh F; Shariati N; Lipman J; Abolhasan M
    Sci Rep; 2020 Aug; 10(1):13638. PubMed ID: 32788706
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Theoretical design of a reconfigurable broadband integrated metamaterial terahertz device.
    Li H; Xu W; Cui Q; Wang Y; Yu J
    Opt Express; 2020 Dec; 28(26):40060-40074. PubMed ID: 33379540
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Toward an Ultra-Wideband Hybrid Metamaterial Based Microwave Absorber.
    El Assal A; Breiss H; Benzerga R; Sharaiha A; Jrad A; Harmouch A
    Micromachines (Basel); 2020 Oct; 11(10):. PubMed ID: 33066167
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thermally Tunable Ultra-wideband Metamaterial Absorbers based on Three-dimensional Water-substrate construction.
    Shen Y; Zhang J; Pang Y; Zheng L; Wang J; Ma H; Qu S
    Sci Rep; 2018 Mar; 8(1):4423. PubMed ID: 29535316
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.